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Abstract 
Prioritization of drug candidates is a crucial stage in the drug development process, requiring effective 
and economical approaches to find potential molecules. This chapter focuses on the transformative 
role of Computer-Aided Drug Discovery (CADD) techniques, specifically virtual screening, 
molecular docking, and molecular dynamics (MD) simulations, in streamlining this process. 
Computational methods are utilized by CADD to predict the interactions between drug candidates 
and biological targets, thereby improving the selection and optimization of potential therapeutics. 
Virtual screening enables the rapid evaluation of vast compound libraries, identifying molecules with 
high binding affinity and specificity. Molecular docking provides detailed insights into the preferred 
orientation and binding modes of these molecules within target proteins, facilitating rational drug 
design. MD simulations offer a dynamic perspective on protein-ligand interactions, revealing the 
stability and conformational changes of biomolecular complexes over time. By using these methods, 
scientists can effectively traverse the process of discovering new drugs, enhancing the likelihood of 
success for potential compounds and decreasing the expenses associated with their development. This 
chapter emphasizes the significance of computational tools for modern drug discovery, demonstrating 
their influence through specific examples and case studies. 

1. Introduction  
1.1. Overview and Importance of Computer-Aided Drug Discovery   
The process of identifying and developing new drugs is intricate, expensive, and time-consuming. 
Typically, the process of developing a new drug and getting it approved for sale in the market spans 
over a decade and requires substantial financial investments, often exceeding billions of dollars. The 
traditional method [1-3] entails conducting extensive laboratory studies and numerous stages of 
clinical trials, which frequently experience significant attrition rates. Many potential drug candidates 
fail during these trials due to their lack of effectiveness or safety issues. In response to these 
formidable challenges, Computer-Aided Drug Discovery (CADD) [4-6] has emerged as a 
revolutionary method that leverages computational technologies to improve and simplify the process 
of discovering new drugs. Through the application of computational models and simulations, 
researchers are able to predict the interactions between drug candidates and biological targets, thereby 
enhancing the effectiveness of drugs prior to their synthesis and laboratory testing.  

The significance of CADD lies in its ability to transform the early stages of drug discovery [7], where 
choices made can have profound implications for subsequent development phases. Early 
identification of promising compounds, facilitated by CADD, can streamline the pipeline, focusing 
resources on the most viable candidates and thereby enhancing overall productivity. This capability 
is especially vital at a time when pharmaceutical companies are under increasing pressure to quickly 
and cost-efficiently introduce novel and efficient treatments to the market. Another advantage of 
CADD is its potential to significantly reduce the cost and duration of drug development. Drug 
discovery is traditionally a resource-intensive process, requiring the synthesis and biological 
evaluation of thousands of compounds to identify a handful of promising candidates. This trial-and-
error approach is both costly and time-consuming. CADD addresses these challenges by enabling 
virtual screening of vast libraries of compounds, allowing researchers to quickly identify those with 
the highest likelihood of success. It also provides a detailed molecular insight into the interactions 
between drug candidates and their targets. These insights facilitate the design of molecules with better 
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efficacy and pharmacokinetic properties, thereby reducing the chances of failure in subsequent phases 
of development.  

1.2. History  
Drug discovery can be divided into three key periods. In the nineteenth century, the initial stage of 
medicinal chemistry mainly relied on the fortuitous discoveries made by chemists. The second stage, 
commencing in the early twentieth century, was marked by the discovery of new drug structures, 
leading to significant advancements in antibiotic discovery. During this time, significant 
advancements were made in several techniques [8-9], including molecular modeling, combinatorial 
chemistry, and automated high-throughput screening. Additionally, the emergence of recombinant 
DNA technology allowed for the identification of prospective therapeutic targets. The third period, 
in the twenty-first century, has been driven by the "Omics" revolution, resulting in a substantial 
increase in the approval of biopharmaceutical drugs by the FDA and EMEA for therapeutic use.  

Thus, the history of CADD goes back to the late 20th century when advancements in computational 
chemistry and structural biology laid the groundwork for a paradigm shift in drug discovery. The 
early stages of CADD were marked by the development of molecular modeling techniques, which 
allowed researchers to visualize and analyze the three-dimensional structures of biological molecules. 
Key milestones include the pioneering work of Pauling and Corey in the 1950s [10], who proposed 
the concept of molecular modeling and elucidated the structures of biomolecules. In the 1970s and 
1980s, the advent of computational methods such as Molecular Dynamics (MD) simulations [11] and 
quantum mechanics calculations expanded the scope of CADD, enabling researchers to simulate the 
behavior of molecules at the atomic level. Concurrently, the emergence of high-performance 
computing systems accelerated the pace of drug discovery, facilitating the screening of large chemical 
libraries and the optimization of lead compounds.  

The 1990s witnessed significant breakthroughs in structural biology, with the rapid development of 
X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron 
microscopy techniques. These advancements provided researchers with unprecedented insights into 
the three-dimensional structures of biological macromolecules, paving the way for structure-based 
drug design approaches. In the early 21st century, the integration of computational tools with 
structural biology techniques gave rise to modern CADD methodologies [12]. Molecular docking 
algorithms [13] emerged as powerful tools for predicting the binding affinity and orientation of small 
molecule ligands within target proteins, while virtual screening techniques [14] enabled the rapid 
identification of potential drug candidates from large chemical databases.  

1.3. Recent advancements in CADD  
In the dynamic landscape of drug discovery, recent years have witnessed remarkable advancements 
in the realm of CADD [15]. This field, leveraging computational power, machine learning, and deep 
insights into biological systems, has undergone transformative developments, propelling drug 
discovery into new frontiers. One of the most significant advancements in CADD stems from the 
integration of Machine Learning (ML) and Artificial Intelligence (AI) techniques [16]. ML and AI 
algorithms have revolutionized drug discovery, enabling the development of predictive models for 
various aspects of drug discovery [17]. These models leverage large datasets of chemical structures 
and biological activities to predict compound properties. Such algorithms have expedited virtual 
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screening processes [18], aiding in the identification of potential drug candidates with unprecedented 
speed and accuracy.  

Furthermore, recent years have witnessed a growing emphasis on structure-based drug repurposing 
[19]. Structure-based CADD techniques, which utilize known protein structures and computational 
docking methods [20], are increasingly being employed to identify new therapeutic uses for existing 
drugs. This approach accelerates the drug development process by repurposing approved drugs for 
new indications [21], thereby reducing costs and timelines associated with traditional drug discovery 
efforts. This approach also enables researchers to design novel drugs with a deeper understanding of 
the three-dimensional structure of target proteins, thereby optimizing drug-target interactions.  

In parallel, Fragment-Based Drug Design (FBDD) [22] has emerged as a powerful strategy in CADD. 
By screening libraries of small molecules or fragments, FBDD identifies molecules that bind to target 
proteins, laying the groundwork for subsequent drug optimization. High-throughput fragment 
screening techniques combined with SB-CADD approaches enable a rapid identification of fragment 
hits, which can then be optimized into lead compounds using structure-based design principles. This 
iterative process has proven to be highly effective in generating novel drug candidates with improved 
potency and selectivity. Virtual screening, a cornerstone of CADD, has also experienced significant 
enhancements. Improved scoring functions, innovative ligand-based [23] and structure-based 
screening methodologies [24], and the integration of machine learning have revolutionized virtual 
screening processes. These advancements enable researchers to sift through vast compound libraries 
with unprecedented efficiency, identifying lead compounds for further experimental validation.  

Additionally, advancements in cloud computing and high-performance computing (HPC) [25] have 
democratized CADD access to computational resources. Researchers can now perform large-scale 
virtual screenings, molecular docking, MD simulations, and other computationally intensive tasks 
more efficiently and cost-effectively. This has accelerated the pace of drug discovery and enabled 
researchers to explore a wider range of chemical space in search of novel therapeutics. Recent 
advancements in CADD have revolutionized the drug discovery process, leading to the identification 
of novel drug candidates with improved potency, selectivity, and safety profiles. By leveraging ML, 
AI, structural biology, and computational resources, researchers are poised to continue making 
significant strides in drug discovery, ultimately improving patient outcomes and addressing unmet 
medical needs.  

1.4. Advantages over Traditional Methods  
Traditional high-throughput screening (HTS) [26-27] methods involve testing large numbers of 
compounds against a biological target to identify active compounds. HTS can be labor-intensive and 
expensive, often requiring sophisticated equipment and significant amounts of biological material. In 
contrast, virtual screening can evaluate millions of compounds in silico in a fraction of the time and 
at a fraction of the cost. By prioritizing the most promising candidates for synthesis and experimental 
testing, CADD can significantly reduce the number of compounds that need to be physically screened.  

CADD allows for the exploration of vast chemical spaces, identifying novel compounds that might 
be overlooked by traditional methods. The chemical space refers to the theoretical space of all 
possible chemical compounds, which is enormous and largely unexplored. Traditional drug discovery 
methods are limited by the number of compounds that can be physically synthesized and tested, 
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whereas CADD can virtually explore millions or even billions of compounds. This capability is 
particularly important for identifying novel chemical scaffolds [28-29] and designing new molecules 
with unique properties. By exploring diverse chemical spaces, CADD can identify compounds with 
improved efficacy, safety, and pharmacokinetic profiles, as well as those that can overcome resistance 
mechanisms. This approach not only enhances the discovery of new drugs but also provides 
opportunities for developing innovative therapies for challenging diseases.  

For example, in the field of antimicrobial drug discovery, the emergence of antimicrobial-resistant 
[30] bacteria is a significant public health concern [31-35]. Traditional methods have struggled to 
keep pace with the rapid evolution of resistance mechanisms. CADD can accelerate the discovery of 
new antibiotics [36-37] by exploring vast chemical spaces and identifying compounds that target 
novel bacterial pathways. By expanding the pool of potential drug candidates, CADD can help 
address the urgent need for new and effective antimicrobial therapies. The impact of CADD on 
modern drug discovery is profound and multifaceted. By leveraging computational technologies, 
CADD offers a more efficient, cost-effective, and precise approach to discovering new drugs. It 
enhances the efficiency of the initial stages of drug discovery, increasing the likelihood of success 
and reducing the risk of failure in clinical trials [38].  

1.5. Objectives of the Chapter  
This chapter aims to focus on prioritizing candidate drugs via virtual screening [39-41], molecular 
docking [42-45], and MD simulations [46-49], which have also been incorporated in the Sanjeevini 
[50-52] module (http://www.scfbio-iitd.res.in/Sanjeevini/index.php) of SCFBio-CADD pipeline. 
These methods play crucial roles in expediting the identification and optimization of potential 
therapeutics by utilizing computational approaches. Virtual screening, in the early stages of drug 
discovery, emerges as a powerful tool that offers a systematic and efficient means of sifting through 
vast compound libraries to identify molecules with desired biological activity. The principles of 
virtual screening, encompassing both structure-based methods, which rely on the three-dimensional 
structures of target proteins, and ligand-based approaches, which utilize known active compounds as 
references, will be explored. By examining the algorithms and strategies employed in virtual 
screening, the utility of this technique in identifying lead compounds with high binding affinity and 
specificity will be elucidated.  

Following the virtual screening, the discussion extends to molecular docking, a linchpin in structure-
based drug design. Molecular docking algorithms predict the preferred orientation and binding mode 
of small molecules within the binding site of target proteins, aiding in the rational design of potential 
drug candidates. By providing insights into the principles and applications of molecular docking, the 
utility in predicting ligand-protein interactions and facilitating the identification of promising drug 
candidates will be elaborated.  

Subsequently, the exploration delves into MD simulations, offering a dynamic perspective on protein-
ligand interactions. MD simulations simulate the motions of atoms and molecules over a period of 
time, offering valuable insights into the dynamic behavior and flexibility of biomolecular complexes. 
The principles and methodologies of MD simulations will be examined to elucidate how these 
simulations enhance our understanding of protein-ligand binding kinetics, conformational changes, 
and stability. Quantifying the thermodynamic stability of biomolecular complexes is of paramount 
importance in understanding ligand binding kinetics and predicting binding affinities accurately. Free 

http://www.scfbio-iitd.res.in/Sanjeevini/index.php
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energy calculation methods [53-56], such as Molecular Mechanics/Poisson-Boltzmann Surface Area 
(MM/PBSA) [57] and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) [58], offer 
valuable insights into the energetics of ligand binding and contribute to the rational design of potent 
and selective drug candidates. This subsection delves into the theoretical foundations of free energy 
calculations, exploring the partitioning of free energy into enthalpic and entropic contributions, 
focusing in particular on developing these quantities based on MD trajectories.   

Finally, this chapter will underscore the importance of integrating various CADD techniques, 
including virtual screening, molecular docking, MD simulations, and free energy analysis, within the 
drug discovery pipeline. By synergistically combining computational methods, researchers can 
navigate the drug discovery pipeline with enhanced efficiency and efficacy, from lead identification 
and optimization to preclinical and clinical development. This section highlights the importance of 
an integrated approach to CADD, emphasizing the complementary nature of different techniques and 
their collective impact on accelerating drug discovery timelines and reducing development costs. We 
illustrate the transformative potential of integrated CADD approaches in modern drug discovery [59] 
through real-world case studies and examples.  

2. Methods in Drug Discovery 
Drug discovery is a complex and multi-disciplinary process that involves identifying new candidate 
medications based on the knowledge of a biological target. Modern drug discovery utilizes various 
computational and experimental techniques to streamline this process. Among the most critical 
methods in contemporary drug discovery are Virtual Screening, Molecular Docking, MD 
Simulations, and Free Energy Analysis. These methods leverage computational power and advanced 
algorithms to predict and analyze the interactions between potential drug molecules and biological 
targets. A thorough explanation of these methods, their underlying principles, operational procedures, 
practical applications, and challenges encountered are presented here. 

2.1 Virtual Screening 
Virtual Screening is a computational method employed in the field of drug development to detect 
promising bioactive molecules from a vast collection of chemical structures. The system utilizes 
computational power to assess and rank chemicals according to their estimated binding capacity to a 
certain protein. Virtual screening is an essential part of structure-based drug design techniques. It 
involves using computational models to evaluate how candidate ligands bind to a target protein [60-
61]. Usually, the screening process involves placing the ligands at various positions or poses within 
the three-dimensional structure of the target protein. A scoring function is assessed at each position 
to estimate the binding-free energy. This information is then used to rank the binding poses and 
various candidate ligands based on their ability to bind to the target protein. Although suitable 
docking poses are commonly created, scoring algorithms generally lack the precision required to 
accurately score poses or ligands [62]. As a result, docking approaches are often enhanced by utilizing 
MD simulations to calculate more precise binding affinities. Virtual screening of vast quantities of 
compounds against target protein binding sites has become an essential element of drug discovery 
procedures. Frequently, this examination is conducted by computationally placing ligands into a 
specific protein binding site. However, this method has the disadvantage of requiring the evaluation 
of numerous positions in order to acquire precise estimations of the strength of the bond between the 
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protein and ligand. There are primarily two types of virtual screening: ligand-based and structure-
based. 

Ligand-Based Virtual Screening (LBVS): This approach utilizes data on established active 
chemicals to discover novel ones. Commonly used techniques include quantitative structure-activity 
relationship (QSAR) models, pharmacophore modeling, and similarity searching [63,64]. The LBVS 
methodology operates under the assumption that compounds possessing analogous structures will 
have comparable biological activity. 

Structure-Based Virtual Screening (SBVS): This approach is based on the three-dimensional 
structure of the protein of interest, which is commonly established using X-ray crystallography, NMR 
spectroscopy, or Cryo-EM more recently. SBVS [65] entails the process of docking a collection of 
chemicals into the specific binding site of the target protein and making predictions about their 
binding affinities. Methods such as molecular docking (explained in the sequel) and high-throughput 
docking are essential components of structure-based virtual screening [66]. 

2.1.1. Workflow of Virtual Screening 
Preparation of Compound Library: A wide range of chemical structures is carefully selected from 
databases such as BIMP, ZINC [67, 68], PubChem [69], or ChEMBL [70]. These molecules undergo 
processing to produce 3D conformations with optimized geometries to facilitate the estimation of 
non-covalent interactions, as well as physicochemical molecular descriptors. The descriptors 
typically include properties such as molecular weight, the number of hydrogen bond donors and 
acceptors, the approximate octanol-water partition coefficient log P (logP) [71,72], the molar 
refractivity (MR) [72], and the Wiener topology index (W) for each ligand. These are precomputed 
and a library of molecules ready for screening is created. 

Target Preparation: The desired protein structure is acquired and processed by delineating the 
binding site, including hydrogen atoms, and assigning appropriate charge states. A few properties, 
such as those listed here, of the active site/binding pocket of the target protein are pre-calculated. The 
molar refractivity and log P values are calculated separately for aromatic and non-aromatic residues. 
Additionally, the hydrogen bond donors are determined for the backbone amide group PD(Amide-
NH) [73]. The amino acid sets that are considered are as follows: positively charged amino acids PD 
(K+R+HIP), neutral amino groups PD (K+N+Q), heteroaromatic donors PD (W+H), and hydroxyl-
containing groups PD (T+S+Y+D+E). The hydrogen bond acceptors are quantified for the backbone 
amide PA(Amide-O) as well as for the following groups: negatively charged PA (D+E), neutral non-
aromatic PA (N+Q+T+S+D-H+E-H), and aromatic acceptors PA (Y+H). Furthermore, the 
measurement of the protein pocket's volume is referred to as PVol. These are some crucial 
characteristics of protein structure that must be taken into account during protein target preparation 
for screening. 

Screening Process: During the screening procedure, Molecules are subjected to comprehensive 
examination using computational techniques such as RASPD+ [73,74] for analysis. In the context of 
LBVS, compounds are methodically compared to a well-selected library of produced compounds. 
This comparison evaluates their structural and chemical characteristics in order to discover 
prospective hits. On the other hand, SBVS uses molecular docking techniques to virtually place 
compounds into the binding site of the target protein. This helps predict how the compounds will bind 
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and their strength of interaction, making it easier to select molecules with a higher potential for 
therapeutic efficacy. These computational approaches are crucial in speeding up the process of 
discovering new drugs by effectively searching through large collections of chemicals and helping to 
prioritize which compounds should be tested experimentally and improved further. 

Scoring and Ranking: During the scoring and ranking step, compounds are assessed according to 
their predicted binding affinities or resemblance to known active compounds [75,76]. This procedure 
depends on a variety of scoring systems specifically designed to estimate binding free energy, a 
critical measure in forecasting the intensity of the interaction between a chemical and its target 
protein. The scoring functions mentioned here cover a range of computational methods, including 
empirical scoring functions and physics-based models. Each of these approaches provides distinct 
insights into the molecular interactions that influence the binding between ligands and targets. By 
utilizing these scoring approaches, scientists can methodically rank compounds with the greatest 
probability of strong and specific binding, accelerating the discovery of potential therapeutic 
candidates in extensive chemical libraries. 

Post-Screening Analysis: After the initial scoring and ranking processes, the top-ranked compounds 
revealed in the post-screening analysis are subjected to thorough validation using more accurate 
computational approaches, particularly molecular docking. The purpose of this stage is to improve 
and confirm the predicted ways in which the selected compounds bind to the target protein's binding 
site, as well as their strengths of interaction. Molecular docking simulations utilize advanced 
algorithms [77] to forecast the energetically advantageous positions and structures of ligands inside 
the protein's active site, yielding significant insights into the probable binding interactions and affinity 
profiles. By combining molecular docking with experimental data and further computational 
analyses, scientists can enhance the selection of compounds, prioritize the most promising candidates, 
and provide guidance for subsequent optimization efforts in the process of drug discovery. This 
ultimately accelerates the development of effective and specific therapeutic agents. 

2.1.2. Applications and Challenges 
Virtual screening is a crucial component of contemporary drug discovery, providing notable benefits 
in terms of cost and time effectiveness by enhancing experimental screening endeavors [78,79]. It 
aids in the discovery of new chemical frameworks and allows for the improvement of initial 
molecules, speeding up the process of developing drugs. However, there are still some obstacles that 
remain in virtual screening approaches. The precision of scoring systems, which play a crucial role 
in forecasting binding affinities and directing compound prioritization, continues to be a significant 
concern. Scoring functions that are not accurate can result in false positives or false negatives, which 
can undermine the reliability of virtual screening results [80,81]. Moreover, the quality of target 
protein structures employed in molecular docking simulations greatly influences the prediction 
precision of virtual screening results. Target protein structures with structural flaws or uncertainties 
might contribute to biases and mistakes in the docking predictions, which can compromise the 
trustworthiness of the screening process. Furthermore, the ever-changing characteristics of proteins, 
such as alterations in shape and adaptability, present a significant obstacle in the process of virtual 
screening [82]. Accurately considering protein flexibility is crucial in docking simulations to estimate 
ligand binding modes and affinities. However, this process is complicated and requires significant 
computer resources. To overcome these issues, it is necessary to constantly improve computational 
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methodologies and closely integrate them with experimental validation techniques. This will improve 
the reliability and prediction capabilities of virtual screening approaches in drug development efforts. 

2.2 Molecular Docking 
Molecular docking is a computer technique used to forecast the optimal arrangement of a small 
molecule (ligand) when it attaches to a target protein (receptor) and to assess the intensity of its 
interaction. Structure-based drug design relies heavily on this technique. Computer modeling plays a 
crucial role in modern medicine by helping to identify new lead molecules [83]. One of the main 
challenges in this field is accurately predicting how candidate ligands bind to target proteins. This 
involves modeling the structures of protein-ligand complexes, which is an essential step in any CADD 
application [84-86]. The success of in-silico drug design relies primarily on two key factors: firstly, 
the use of a proficient and resilient molecular docking protocol that can accurately position the 
candidate molecule in an energetically advantageous conformation relative to its target protein 
conformation, and secondly, the implementation of an effective scoring function to evaluate the 
binding affinity of the modeled complex [87]. The docking problem in computational techniques is 
categorized into two types: rigid body algorithms and flexible algorithms. The rigid body 
approximation is the initial and fundamental stage of docking, where the flexibility of the protein and 
ligand is not explicitly taken into account [88]. As a result, the search algorithm quickly explores the 
optimal position of the ligand in the active site of the receptor within a six-dimensional search space, 
utilizing the translational and rotational degrees of freedom of the ligand. Some examples of inflexible 
docking programs [89] are DOCK [90], Yucca [91], and FRED [92]. Flexible docking approaches 
involve the addition of torsional degrees of freedom to either the ligand alone or to both the receptor 
and ligand. Several docking techniques have been documented in the past few years. The algorithms 
are categorized into three groups based on the search criteria: systematic search (including 
incremental construction, conformational search, and databases), random or stochastic approaches 
(such as Monte Carlo, evolutionary algorithms, and tabu search), and simulation methods. The 
incremental construction algorithms initially divide each molecule into a collection of inflexible 
pieces based on rotatable bonds, then subsequently assemble the fragments gradually around the 
binding pocket. Several instances of this category are DOCK, FlexX [93], Surflex [94], FLOG [95], 
and Hammerhead [96]. Stochastic search algorithms such as AutoDock [97], ICM [98], GOLD [99], 
and MCDOCK [100] are representative examples. These algorithms are based on either genetic 
algorithms or the Monte Carlo simulated annealing approach. These approaches function by 
implementing substantial random alterations to the ligand. MD simulation approaches enable the 
simulation of different components of a protein-ligand system at varying temperatures. In addition to 
search techniques used in docking exercises, the scoring function is crucial in determining the ranking 
of different bound states. To accurately determine the optimal conformation of a docked structure, it 
is crucial to employ both a highly effective search and docking algorithm, as well as a robust scoring 
system [101]. An excellent search strategy should possess high efficiency in accurately identifying 
the global minimum. While many docking systems have been tested on different sets of complexes, 
there is a lack of comprehensive analysis of the projected structures and their binding energetics 
compared to experimental results. This work aims to investigate two fundamental questions: (1) the 
effectiveness of the search approach used for stiff protein ligands in predicting the crystal structure 
and (2) the reliability of the combined docking/scoring process in terms of efficiency. 
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2.2.1. Workflow of Molecular Docking 
 

Molecular Docking Search Algorithm: The search algorithm is a crucial technique in computational 
biology for exploring the conformational space of ligands and understanding their possible 
orientations within the protein's binding site. Researchers utilize advanced methodologies such as 
genetic algorithms [102], Monte Carlo simulations [103], and systematic search approaches [104] to 
explore the extensive range of molecular configurations. This enables them to uncover energetically 
advantageous conformations and binding poses. Genetic algorithms utilize concepts derived from 
natural selection to progressively enhance ligand conformations, while Monte Carlo simulations 
randomly explore the conformational and configuration space, guided by thermodynamic 
considerations. Systematic search methods methodically investigate the parameter space, effectively 
encompassing potential ligand orientations within the protein binding site. These approaches together 
facilitate the investigation of intricate molecular interactions, assisting in the development of drugs 
by anticipating how ligands attach and improving our comprehension of the links between molecular 
structure and biological activity, which is essential for designing drugs based on reason and logic. 

Molecular Docking Scoring Function: The scoring function is a crucial component in 
computational drug development since it assesses the binding affinity between a ligand and its protein 
target. These functions are formulated using empirical, knowledge-based, or force-field-based 
methodologies, with the goal of approximating the binding free energy between the ligand and 
protein. Empirical scoring functions utilize statistical analyses of experimental data to establish 
mathematical correlations between molecular characteristics and binding affinities. Knowledge-
based scoring systems utilize databases of established protein-ligand complexes to deduce interaction 
patterns and energetics. Force-field-based scoring functions employ molecular mechanics force fields 
to compute the intermolecular interactions and energy terms that influence the binding of ligands to 
proteins. Scoring functions allow for a semi-quantitative assessment of these interactions, enabling 
the prioritization and ranking of possible ligands. This helps in selecting viable candidates for further 
experimental validation and drug development. 

2.2.2 Applications and Challenges 
Molecular docking is a crucial technique in the field of drug development. It encounters many 
obstacles despite its extensive applicability. Precisely representing protein flexibility is essential for 
accurately predicting actual binding interactions. This remains a challenge due to the dynamic nature 
of proteins. Integrating solvent effects into docking simulations introduces additional complexity, as 
it profoundly affects the energetics of ligand binding and can have a substantial impact on the 
accuracy of predictions. Moreover, the constraints of scoring algorithms in precisely calculating 
binding affinities present a difficulty in virtual screening and lead optimization endeavors. Continuing 
research in the field of molecular docking focuses on boosting the dependability and predictive 
capability of docking simulations in drug development by improving the accuracy of scoring 
functions and tackling the challenges posed by protein flexibility and solvent effects. It is crucial to 
overcome these problems in order to optimize the efficiency of molecular docking and expedite the 
progress of developing novel medicines. 
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2.3 MD Simulations 
MD simulations are computer techniques employed to investigate the dynamic behavior of atoms and 
molecules by tracking their physical motions over a period of time. They offer comprehensive 
analysis of the kinetics and structural alterations of biomolecules, which are essential for 
comprehending their functionality and interactions. In recent years, the use of MD simulations in 
molecular biology and drug development has significantly increased. These simulations accurately 
depict the actions of proteins and other biomolecules at the atomic level and with precise time 
measurements. The significant advancements in speed, precision, and availability of biomolecular 
simulation methods, coupled with the widespread availability of experimental structure data, have 
made biomolecular simulation more attractive to experimentalists. Simulations have been found to 
be highly useful in understanding the operational mechanisms of proteins and other biomolecules, 
revealing the underlying structure/mechanisms of diseases, and in the creation and improvement of 
therapeutically relevant small molecules, peptides, etc. A molecular biologist studying the 
functionality of a protein or any other biomolecule encounters a comparable obstacle. An atomic-
level structure is highly advantageous and usually provides a significant understanding of the 
biomolecule's functionality. The atoms within a biomolecule exhibit perpetual motion, and the 
functionality and intermolecular interactions are contingent upon the dynamics of the participating 
molecules. One desires not only a fixed image but also the capability to observe these biomolecules 
in motion, manipulate them at the atomic scale, and observe their corresponding reactions. 
Regrettably, observing the movements of individual atoms and manipulating them in a desired 
manner poses a significant challenge. A compelling option is to utilize an atomic-level computer 
simulation to study the pertinent biomolecules. 

MD simulations utilize a comprehensive model of interatomic interactions to forecast the movement 
of each atom within a protein or other molecular system as time progresses [105]. These simulations 
have the ability to accurately represent a diverse range of significant biomolecular processes, such as 
conformational change, ligand binding, and protein folding. They provide detailed information about 
the positions of all the atoms with a temporal resolution of femtoseconds. Significantly, these 
simulations have the ability to forecast the atomic-level reactions of biomolecules to disturbances like 
mutation, phosphorylation, protonation, or the introduction or elimination of a ligand. MD 
simulations are frequently employed alongside diverse experimental structural biology techniques, 
such as X-ray crystallography, cryo-EM, NMR, electron paramagnetic resonance (EPR), and Förster 
resonance energy transfer (FRET). 

MD simulations are not a recent development. The initial MD simulations of simple gases were 
conducted in the 1950s by Alder and Wainwright (1957). The initial MD simulation of a protein took 
place in the 1970s [106]. The fundamental principles that made these simulations possible were 
acknowledged as a significant contribution to the field of chemistry and were awarded the Nobel 
Prize in Chemistry in 2013 [107,108]. MD simulations have gained significant popularity and 
visibility in recent years, especially among experimental molecular biologists. Simulations are 
increasingly common in experimental structural biology studies, serving the purpose of interpreting 
experimental findings and providing guidance for further experimental investigations. In the field of 
neuroscience, for instance, simulations have been used extensively to investigate proteins that play a 
crucial role in neuronal signaling. These simulations have also been employed to aid in the 
development of drugs that target the nervous system, uncover the mechanisms behind protein 
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aggregation in neurodegenerative disorders, and lay the groundwork for the design of more advanced 
optogenetics tools. 

MD simulations utilize classical mechanics, Newtonian dynamics, in particular, to model the behavior 
of atoms and molecules. In this approach, atoms and molecules are considered as particles that move 
in response to forces generated by potential energy functions. 

Force Fields: Within the realm of MD simulations of proteins, the word "force field" denotes the 
amalgamation of a mathematical equation and its corresponding parameters, which are employed to 
articulate the energy of the protein based on its atomic coordinates. Since the early 1980s, there have 
been ongoing efforts to generate force fields for drug-like molecules due to the growing interest in 
modeling and simulation in drug discovery. The force fields commonly employed for small molecules 
in present times are OPLS-All-Atom (OPLS-AA) [109], OPLS3 [110], the CHARMM General force 
field (CGenFF) [111-113], the General AMBER Force Field (GAFF) [114, 115], Merck Molecular 
Force Field (MMFF) [116-120], and GROMOS [121-125]. The maintenance and improvement of 
these force fields have been ongoing, with monthly updates to incorporate new parameters that 
encompass a broader spectrum of chemical entities. Due to the high potential for errors and the need 
for extensive experience, algorithms have been created to automatically detect atom types and 
generate parameters for compounds, eliminating the need for manual assignment. As an illustration, 
the AnteChamber program was specifically created to produce GAFF and AMBER topologies. 
Similarly, the CGenFF program, which can be accessed through the ParamChem website [126], was 
developed to build CHARMM topologies and parameters using CGenFF as a basis. Additional 
programs for parameter assignment include ATB [127] and PRODRG [128, 129] for GROMOS, as 
well as MATCH [130] and SwissParam [131] for CHARMM.  

2.3.1. Workflow of MD Simulations 
System Preparation: The original configuration of the biomolecule is acquired from databases such 
as the Protein Data Bank and is thoroughly examined for its integrity, with any absent atoms or 
residues being supplemented as required. Next, the biomolecule is immersed in a container of 
water/solvent molecules using a suitable water/solvent model (such as TIP3P or SPC/E [132]), and 
periodic boundary conditions are applied to simulate an endless system. In order to achieve system 
neutralization, counterions are introduced to offset the charges of the biomolecule, and supplementary 
ions may be incorporated to mimic the ionic strength found in physiological conditions. The system 
undergoes energy minimization to remove any unfavorable interactions, followed by equilibration in 
NVT [133] and NPT [134] ensembles to stabilize temperature and pressure, ensuring that the water 
and ions are appropriately positioned around the biomolecule. 

Energy Minimization: The objective of energy minimization is to eliminate steric conflicts and 
optimize the geometry of the system so as to achieve a physically realistic and stable configuration 
prior to dynamics simulations. Steric clashes occur when atoms are in close proximity, resulting in 
strong repulsive interactions. These conflicts are handled during minimization by altering the 
locations of the atoms. This procedure depends on a potential energy function determined by a force 
field (such as AMBER or CHARMM) that includes both bound and non-bonded interactions. 
Different techniques, such as steepest descent and conjugate gradient, are employed, persisting until 
a convergence condition, such as a low energy gradient, is achieved. Energy minimization, carried 
out using software tools such as AMBER [135, 136] or GROMACS [137], leads to a structure that 



   
 

18 
 

has lower potential energy and is free from steric conflicts. It also offers an energy profile that can be 
analyzed. 

Equilibration: Equilibration is performed by subjecting the system to carefully regulated 
temperature and pressure settings in order to attain a state of stability. This procedure consists of two 
main stages: NVT (constant Number, Volume, Temperature) and NPT (constant Number, Pressure, 
Temperature) ensembles. During the NVT phase, the system's temperature is incrementally modified 
to the desired value using a thermostat. This ensures that the biomolecule and the liquid surrounding 
it reach thermal equilibrium without causing any notable changes in their structure. Subsequently, the 
NPT phase employs a barostat to regulate the pressure, enabling the system volume to vary and attain 
the desired pressure, hence ensuring the stability of the system's density. This step guarantees that 
both temperature and pressure are balanced, resulting in a system that replicates true biological 
conditions. The equilibration process entails monitoring and verifying the stability of different 
parameters, including temperature, pressure, density, and potential energy. Typically, these stages are 
implemented using tools such as GROMACS, AMBER, and CHARMM. Specific input files are 
utilized to define the thermostat, barostat, target temperature, and pressure. Effective equilibration 
yields a biomolecular system that is stable and prepared for productive MD simulations, with properly 
balanced solvent and ion distributions surrounding the biomolecule. 

Production Run: The production run is the stage in which the real MD simulation takes place, usually 
lasting from nanoseconds to microseconds, in order to examine the temporal progression of the 
system. In this phase, the system is simulated under constant circumstances, typically in the NPT 
ensemble, to ensure realistic environmental conditions are maintained. The selection of the time step 
is crucial, often ranging from 1 to 2 femtoseconds, in order to precisely capture the movements of 
atoms while maintaining numerical stability. The simulation produces trajectories that document the 
locations, velocities, and forces exerted on every atom during the duration. These trajectories are 
employed to examine the dynamic characteristics of the biomolecule, encompassing conformational 
alterations, interactions with solvents and ions, and reaction routes. Advanced techniques like replica 
exchange or enhanced sampling approaches might be utilized to examine the energy landscape of the 
system completely. The production run requires significant computing resources and is usually 
performed using high-performance MD software packages such as GROMACS, AMBER, or 
CHARMM. The results of the manufacturing run, which include trajectory files, energy profiles, and 
structural snapshots, offer useful data for the subsequent analysis and interpretation of the 
biomolecular processes being studied. 

Analysis: When analyzing trajectory data, researchers extract many important observations to gain a 
comprehensive understanding of the dynamic behavior of molecular systems. Conformational 
modifications are carefully examined, uncovering alterations in molecular structure that are essential 
for comprehending functionality. An analysis is conducted to unravel the complicated mechanisms 
involved in molecular recognition and the creation of complexes by studying binding interactions. 
The dynamic features of a system can be assessed using metrics such as root-mean-square deviation 
(RMSD), which provides information on the system's stability and fluctuations over time. 
Additionally, root-mean-square fluctuation (RMSF) can be used to understand the flexibility of 
individual residues. In addition, the examination of hydrogen bonds offers a comprehensive view of 
the intermolecular interactions that are crucial for the stability and functioning of molecules. 
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Collectively, these studies provide a thorough perspective on the structural changes and interactions 
within the system being studied. 

2.3.2 Free Energy Analysis 

Free Energy Analysis is a crucial technique in molecular biophysics that allows for the precise 
assessment of the energy distribution involved in important molecular events such as ligand binding 
or conformational changes. By calculating the changes in free energy, this method provides a deep 
understanding of the thermodynamic principles that control these occurrences, therefore enabling the 
logical development of candidate drugs. Free Energy Analysis is a valuable tool for studying the 
stability of protein-ligand complexes and the dynamics of biomolecular conformations. It provides 
important information about the energy involved in molecular interactions, which can be used to 
optimize drug candidates and predict binding affinities. This methodological framework is a crucial 
tool in the collection of computational tools used for drug discovery. It enables researchers to make 
well-informed judgments and speed up the creation of new treatments. Molecular biophysics employs 
advanced methodologies, including Molecular Mechanics Poisson-Boltzmann Surface Area 
(MMPBSA), Molecular Mechanics Generalized Born Surface Area (MMGBSA), and MMBAPPL+ 
[138] approaches, to accurately measure the alterations in free energy that occur during molecular 
processes. These methodologies offer a thorough comprehension of the contributions made by various 
energy components, such as molecular mechanics, solvation effects, and entropy changes. Moreover, 
Free Energy Perturbation (FEP) [139] and Thermodynamic Integration (TI) [140] methods provide 
advanced approaches for calculating the differences in free energy between two states by 
systematically converting one state into the other. The FEP and TI methods, although compute-
intensive, play a crucial role in rational drug design and biomolecular engineering by systematically 
perturbing molecular systems and accurately calculating binding affinities, stability constants, and 
conformational preferences through the quantification of associated free energy changes. Together, 
these approaches are essential tools for understanding the thermodynamic principles that control 
molecular interactions and for driving the creation of new molecules that have improved effectiveness 
and selectivity. 
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3. Integrated Workflow  

 

  

Fig. 1: Workflow for Ligand Bioactivity Prediction, Target Identification, Active Site 
Prediction, Virtual Screening, Molecular Docking, and MD Simulations 

When working with an unknown ligand, a structured workflow is essential to systematically analyze 
its bioactivity, identify potential protein targets, predict active sites, and perform molecular modeling 
to propose potential lead molecules. The process begins with the ligand itself, an unknown compound 
whose properties and interactions need to be elucidated. The first step involves utilizing the FishBAIT 
web tool (http://www.scfbio-iitd.res.in/fishbait/), a tool designed specifically to "fish" bioactivity 
information and predict potential targets for the ligand. FishBAIT analyzes the chemical structure of 
the ligand and cross-references it with known bioactivity data to provide insights into its possible 
biological functions and target proteins. This initial bioactivity prediction is crucial as it sets the stage 
for subsequent steps. 

Upon obtaining potential protein targets from FishBAIT, the next step involves assessing whether 
these targets have known active sites. If the predicted protein target has a documented active site, the 
workflow advances to molecular docking using ParDOCK+ (http://www.scfbio-
iitd.res.in/pardock+/). ParDOCK+ is a powerful tool that facilitates the docking of the ligand into the 
active site of the target protein, predicting how the ligand binds and interacts at the molecular level. 
This step is critical for understanding the binding affinity and orientation of the ligand within the 
active site, providing insights into its potential efficacy as a drug or therapeutic agent. 

However, if the active site of the predicted protein target is not known, the workflow requires the use 
of active site prediction software (AADS; http://www.scfbio-iitd.res.in/AADS/). This software 

http://www.scfbio-iitd.res.in/AADS/
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analyzes the protein structure to identify potential active sites where the ligand might bind. Once the 
active site is predicted, molecular docking using ParDOCK+ can proceed as previously described, 
ensuring that the ligand's interactions with the protein are thoroughly explored. 

For users who have a protein structure with a known active site, the workflow incorporates virtual 
screening using RASPD+ (http://www.scfbio-iitd.res.in/raspd+/). Virtual screening is a 
computational technique that involves screening a library of compounds against a protein target to 
identify potential hits. RASPD+ enhances this process by efficiently screening large libraries and 
identifying compounds that exhibit high binding affinity to the target protein. In addition to RASPD+, 
the BIMP database (https://scfbio.iitd.ac.in/bimp/) can be utilized for screening. The BIMP database 
contains a vast collection of bioactive molecules, and screening against this database increases the 
chances of identifying promising compounds. 

If the user has a protein structure but lacks active site information, the workflow necessitates active 
site prediction before proceeding to virtual screening. Active site prediction software is employed to 
determine potential binding sites on the protein, and once these sites are identified, virtual screening 
using RASPD+ and the BIMP database can be conducted. This ensures that the ligand can be 
effectively screened against potential binding sites on the protein even without prior knowledge of 
active sites. 

Following the virtual screening, selected hits are subjected to molecular docking using ParDOCK+. 
This step refines the virtual screening results by providing detailed insights into the binding 
interactions of the ligand with the protein target. The docked complexes are then analyzed further 
through MD simulations. MD simulations are computational techniques that simulate the physical 
movements of atoms and molecules over time. By performing MD simulations on the docked 
complexes, researchers can assess the stability and dynamics of the ligand-protein interactions, 
gaining a deeper understanding of how the ligand behaves within the binding site. 

To complement MD simulations, free energy analysis is performed using MMPBSA, MMGBSA, and 
MMBAPPL+ methods. These techniques allow the calculation of the free energy changes associated 
with ligand binding, providing quantitative insights into the strength and stability of the interactions. 
MMPBSA and MMGBSA are widely used for their ability to decompose the free energy 
contributions into various components, such as electrostatic, van der Waals, and solvation energies. 
MMBAPPL+ offers additional validation by incorporating alternative approaches and ensuring 
robustness in the free energy calculations. 

Throughout this workflow, the integration of various computational tools and techniques allows for 
a comprehensive analysis of the ligand's bioactivity, target interactions, and binding properties. By 
starting with bioactivity prediction and target identification, the workflow ensures that the ligand's 
potential functions and targets are thoroughly explored. Active site prediction and molecular docking 
provide detailed insights into the binding interactions, while virtual screening expands the scope of 
potential hits. MD simulations and free energy analysis further refine these findings, offering a 
dynamic view of ligand-protein interactions and quantifying their stability. 

Ultimately, the goal of this workflow is to identify and propose potential lead molecules based on the 
combined results of bioactivity predictions, molecular docking, virtual screening, MD simulations, 
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and free energy analysis. A lead molecule is a compound that demonstrates promising bioactivity and 
binding affinity, making it a candidate for further development and optimization in drug discovery. 
By following this structured approach, researchers can systematically narrow down the vast chemical 
space of potential compounds, identifying those with the highest potential for therapeutic 
applications. 

In conclusion, this comprehensive workflow leverages advanced computational tools and techniques 
to analyze unknown ligands, predict their bioactivity, identify protein targets, and assess their binding 
interactions. From bioactivity prediction with FishBAIT to molecular docking with ParDOCK+, 
virtual screening with RASPD+ and the BIMP database, and detailed analysis through MD 
simulations and free energy calculations, each step builds upon the previous ones to provide a 
thorough understanding of the ligand's potential as a lead molecule. This systematic approach not 
only streamlines the drug discovery process but also enhances the accuracy and efficiency of 
identifying promising therapeutic candidates. Some commercial software offers alternatives to the 
above modules with nearly similar functionalities. 

To navigate the complex workflow of analyzing an unknown ligand and its potential interactions with 
protein targets, various entry points have been designed, each with specific minimum requirements, 
to ensure smooth progression through the workflow. The first entry point involves the ligand itself, 
particularly an unreviewed ligand entering the FishBAIT software. For this step, the essential 
requirement is the chemical structure of the ligand, which must be provided in a format such as 
SMILES, InChI, or a structure file like SDF or MOL. FishBAIT utilizes this structural information 
to predict the bioactivity of the compound and identify potential protein targets by referencing 
extensive bioactivity databases. This step is crucial as it sets the foundation for all subsequent 
analyses if the target is unknown and only a bioactive compound is known against a particular disease. 

The second entry point is for scenarios where there is a protein target without known active site 
information. Here, the primary requirement is the three-dimensional structure of the protein, usually 
provided in the PDB (Protein Data Bank) [141] file format. Active site prediction software, such as 
AADS [142], CASTp [143], or Fpocket [144], is then used to analyze the protein structure and predict 
potential active sites where ligands might bind. This prediction is essential for guiding further 
molecular docking studies. 

In cases where the protein has a known active site, the third entry point involves virtual screening 
using RASPD+ software. The minimum requirements for this step include the protein structure with 
defined active site coordinates and a library of compounds to screen against. RASPD+ is utilized to 
identify compounds with high binding affinity to the protein's active site. This step is particularly 
important for narrowing down potential lead compounds from a large library. 

The fourth entry point is for proteins with known active sites that need to be screened against the 
Indian Phytochemicals database BIMP or other molecular databases such as Zinc, etc. Similar to the 
RASPD+ screening, this step requires the protein structure with active site information and access to 
the BIMP, which contains a curated collection of bioactive molecules from Indian medicinal plants. 
This specialized screening can uncover natural compounds with therapeutic potential. The 
methodology can also cover Zinc and other small molecule databases that have been pre-prepared for 
virtual screening using RASPD+. 
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The fifth entry point involves a protein and a ligand prepared for molecular docking using ParDOCK+ 
software. The minimum requirements here include both the protein structure (with or without active 
site information, if previously predicted) and the ligand structure. ParDOCK+ performs detailed 
molecular docking to predict the binding orientation and affinity of the ligand within the protein's 
active site. This step refines the understanding of ligand-protein interactions. 

Finally, the sixth entry point is for the protein-ligand docked complex, ready for MD simulations. 
The requirements for this stage include the docked complex structure, typically in PDB format, along 
with parameters for running MD simulations, such as force field information and simulation 
conditions (temperature, solvent model, etc.). MD simulations provide dynamic insights into the 
stability and behavior of the ligand-protein complex over time. Post-simulation, free energy analysis 
using methods like MMPBSA, MMGBSA, or MMBAPPL+ can be performed to quantify the binding 
affinity and validate the interactions observed during docking and MD simulations. 

In summary, each entry point in this workflow has specific prerequisites that ensure a seamless 
transition from one step to the next, starting from ligand bioactivity prediction or specification of a 
protein target to detailed molecular docking and dynamic simulations. This structured approach not 
only facilitates the efficient identification of potential lead molecules but also integrates a 
comprehensive analysis of their interactions and stability, ultimately aiding in the drug discovery 
process. Most phytochemicals obtained from plants, including phenolic compounds and flavonoids, 
have been demonstrated to have a positive impact on health. Plant-based pharmaceuticals are gaining 
popularity due to their natural composition, non-addictive properties, easy biodegradability, minimal 
side effects, and cost-effectiveness in both developing and developed countries [145, 146]. Modern 
dietary patterns influence the attainment of a nutritionally balanced diet. There is a growing disparity 
in nutrition, and therefore, the concept of normal living has been altered. Within this framework, 
dietary supplements and herbal remedies are prevalent as supplementary or alternative products for 
individuals. Various diseases are currently associated with "oxidative stress," which arises when there 
is an imbalance between the production of pro-oxidants and their elimination. 

4. Some Case Studies  
India boasts a long and vibrant history of medicinal knowledge. Traditional systems like Ayurveda 
and Siddha have flourished for centuries, recognizing the immense potential of plants for healing. 
Natural plants are regarded as nature's gifts, each with unique properties that promote health and well-
being. Ancient Ayurvedic texts, which date back thousands of years, document the use of numerous 
plants for treating various ailments. Nature’s pharmacy in India, such as Tulsi (Holy basil), Turmeric, 
Neem, Ginger, Ashwagandha, and Haritaki, to name a few, boasts a vast array of medicinal plants.  

Medicinal plants are currently receiving significant interest due to their distinct qualities as abundant 
reservoirs of medicinal bioactive compounds, which have the potential to facilitate the development 
of novel pharmaceuticals. According to the WHO reports, 80% of individuals in underdeveloped 
nations depend on traditional medicine as their main source of healthcare [147]. Ancient Indian 
medical systems like Ayurveda, Siddha, and Unani promote the utilization of medicinal plants for the 
treatment of diseases [148]. Ayurveda and Unani hold the belief that medicinal herbs have the 
potential to decrease the likelihood or diminish the danger of cardiovascular illness, as well as other 
conditions such as rheumatoid arthritis, lung disorders, cataracts, Parkinson's disease, and improve 
liver function [149]. Plants produce a wide variety of biologically active substances and serve as an 
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important reservoir of medicines [150]. Phytochemicals are broadly classified based on their chemical 
structures and biological activities. The main categories include:  

i. Alkaloids: These nitrogen-containing compounds are primarily found in plants like coffee, tea, and 
certain vegetables. Alkaloids have a diverse range of pharmacological effects, including pain relief, 
stimulation, and anti-malarial properties. Examples of alkaloids include Morphine (analgesic), 
quinine (antimalarial), and caffeine (stimulant) etc.  

ii. Flavonoids: Flavonoids are Polyphenolic compounds that are found in a wide variety of fruits, 
vegetables, and beverages like tea and wine. They are known for their antioxidant properties. They 
help reduce inflammation and may lower the risk of chronic diseases such as heart disease and cancer. 
A few examples include quercetin, catechins, and anthocyanins.  

iii. Terpenoids: They are the largest class of phytochemicals, including essential oils and carotenoids. 
Beta-carotene, lycopene, and lutein are well-known carotenoids that are linked to eye health and may 
reduce the risk of certain cancers. Limonene (anticancer), menthol (analgesic), and beta-carotene 
(antioxidant) are examples of Terpenoids.  

iv. Phenolic Acids: Compounds with potent antioxidant activity and help in reducing inflammation 
and preventing cellular damage. They are found in foods like coffee, fruits, and vegetables. Examples 
include ferulic acid, gallic acid, and salicylic acid.  

v. Glycosides: Molecules consisting of a sugar and a non-sugar component with diverse therapeutic 
effects. Examples include digoxin (cardiotonic) and sennosides (laxatives).  

vi. Saponins: Saponins are present in beans and legumes. Compounds with soap-like properties, 
known for their immune-boosting and anticancer effects, such as saponins, have been shown to lower 
cholesterol levels as well. A few examples include ginsenosides and diosgenin.  

vii. Glucosinolates: Glucosinolates are sulfur-containing phytochemicals found in cruciferous 
vegetables like broccoli, cabbage, and Brussels sprouts. These phytochemicals have shown cancer-
preventive properties. 

4.1. Prioritising Phytochemicals in Haritaki 
Medicinal plants such as Haritaki are increasingly attracting attention due to their unique properties 
as a rich source of bioactive compounds, which hold potential for the development of new medicines. 
Terminalia chebula Retzius, often known as Haritaki, is extensively grown in South East Asia, 
especially India. Haritaki is a term that holds significant significance. It has healing properties and is 
said to cure all ailments [151]. The tree is a perennial member of the Terminalia genus and is widely 
recognized as a rejuvenating plant. This tree is native to the forests of Northern India, particularly in 
regions with little precipitation, such as Uttar Pradesh and Bengal. It can also be found in Tamil Nadu, 
Karnataka, and Southern Maharashtra.  

Harad is the Hindi name for this herb, but it is also called Haritaki in Sanskrit. It holds a prominent 
place in Ayurveda, being well-recognized and used. In Tibet, it is referred to as the "King of 
Medicine," and its remarkable healing properties have positioned it as the highest-ranking item on 
the Ayurvedic Materia Medica list [152]. Haritaki is available in seven distinct variations: Vijayan, 
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Boodhana, Rogini, Abhyan, Amrutha, Boothagi, and Sethagi. These types are recognized in Siddha 
literature based on their geographical distribution. In addition to salt, the fruit of haritaki possesses 
five distinct tastes: a pungent outer peel, a sour ridge, an astringent seed, a bitter stem, and a sweet 
endosperm [153]. It is commonly known as an epicenter of medicinal activity and a significant 
ethnomedicinal plant in human society. Since ancient times, it has been utilized as a medicinal 
remedy. It contains a variety of beneficial compounds such as phytochemicals, tannins, flavonoids, 
sterols, amino acids, fructose, resin, and oils. However, it is especially abundant in tannins (32%–
34%), which give it a bitter and astringent taste. This is the main reason why it is not widely accepted 
by consumers [154].  

Consuming Haritaki can not only fulfill people's nutritional requirements but also have a significant 
role in the production of nutraceuticals. Consequently, the food and flavor sectors are seeking 
innovative food constituents to use in the production of dietary supplements. Haritaki usage can also 
help meet nutritional requirements and prevent other degenerative diseases, including cancer, 
neurological disorders, cardiovascular disorders, and aging. Compounds found in the plant provide 
biological functions and can exhibit chemically significant impacts on human systems, leading to 
reduced negative consequences [155]. In Thai traditional medicine, the fruit of the haritaki is utilized 
for its laxative, carminative, astringent, expectorant, and tonic properties. Fever, cough, diarrhea, 
gastroenteritis, skin problems, candidiasis, urinary tract infection, and wound infections are all 
prevalent ailments that Tamil Nadu tribes commonly treat as a kind of traditional medicine [156]. It 
is used to decelerate the process of aging and enhance longevity and immune system function [157]. 

Various studies have delved into its chemical constituents, revealing the presence of bioactive 
compounds such as tannins, gallic acid, chebulagic acid, and chebulinic acid. T. chebula exhibits a 
spectrum of therapeutic properties, encompassing antibacterial [158,159], antifungal [160-162], 
antiamoebic and immunomodulatory [163,164], antiplasmodial [165], molluscicidal [166], 
anthelmintic [167], antiviral [168-170], antimutagenic and anticarcinogenic [171,172], antidiabetic 
[173], antiulcerogenic [174], and radioprotective activities [175]. Its widespread adoption among 
diverse ethnic groups, ‘vaidyas’, ‘hakims’, and Ayurvedic practitioners underscores its esteemed 
status as a popular remedy for various ailments, as corroborated by comprehensive literature surveys 
on T. chebula [176].  

LC-MS and Mass spectra analysis of Aqueous extract of Haritaki: Two grams of plant (T. 
chebula) were dried, crushed, and mixed in 10 mL Phosphate Buffered Saline (PBS). The mixture 
was incubated overnight at 50 °C to extract the active ingredients. The suspension was centrifuged at 
4000 g for 10 minutes. The resulting supernatant was collected and dried at 37 °C overnight. The 
dried plant extract powder was dissolved in PBS at 10 mg/mL. The extracts were filter sterilized, and 
aliquots were made and stored at -20 °C till further use. Freshly prepared dilutions were used in each 
experiment. The Haritaki extract was analyzed using a QTOF-MS instrument (Waters Xevo G2 QTof, 
Waters, Milford, MA, USA) in electrospray ionization (ESI) mode. The instrument had a mass 
resolution of 20,000 and was controlled by MassLynx 4.1 software. A chromatographic separation 
was performed using a Waters Acquity UPLC BEH C18 column with dimensions of 2.1 mm inner 
diameter and 100 mm length, packed with 1.7 μm particles. The separation was carried out at a 
temperature of 35°C. An autosampler was used to inject the sample. The mass spectrometer was 
calibrated using a solution of sodium formate with a concentration of 0.5 mM. Leucine enkephalin, 
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at a concentration of 2 μg/mL and with a mass-to-charge ratio (m/z) of 554.2615 in negative mode, 
was employed as a lock spray at a flow rate of 10 μL/min. The collision energy was 6 V. The source 
parameters were set as follows: capillary voltage at 2.5 kV, sampling cone voltage at 30 V, extraction 
cone voltage at 4 V, source temperature at 150 °C, desolvation temperature at 500 °C, gas flow at 
1000 L/h, and cone gas flow at 50 L/h. The mass spectrum analysis was conducted utilizing the 
Waters Xevo G2 QTof instrument. The column employed is the AQUITY UPLC BEH C18 with a 
diameter of 1 mm and a length of 100 mm. 
All the extracted bioactive compounds from Haritaki were subjected to virtual screening, molecular 
docking, and MD simulations (Fig. 2) to analyze their anticancer and antiviral activities. 

 

 

Fig. 2: A workflow for the identification of promising candidates as anticancer and antiviral agents. 
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4.1.1. Case Study 01: As Anticancer Agents against TNBC 
This case study focuses on the prioritization of phytochemicals found in the Haritaki plant as 
anticancer agents against Triple Negative Breast Cancer (TNBC) using the workflow given in Fig. 2. 
TNBC, a particularly aggressive form of breast cancer lacking estrogen, progesterone, and HER2 
receptors, presents unique challenges in diagnosis and treatment. TNBC [177] represents a subtype 
of breast cancer characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor 2 (HER2) expression, limiting targeted therapeutic 
options. Consequently, TNBC patients often face aggressive disease progression and poorer 
prognoses compared to other breast cancer subtypes. In recent years, there has been growing interest 
in exploring alternative therapeutic targets to improve outcomes for TNBC patients. Among these, 
nuclear factor-kappa B (NF-κB) signaling has emerged as a promising candidate due to its pivotal 
role in regulating various cellular processes, including inflammation, proliferation, and apoptosis, all 
of which are implicated in TNBC pathogenesis. Dysregulated NF-κB signaling has been associated 
with TNBC aggressiveness, metastasis, and resistance to conventional therapies. Therefore, targeting 
NF-κB signaling pathways holds significant potential for the development of novel and effective 
therapeutic strategies against TNBC, addressing an unmet clinical need and providing hope for 
improved patient outcomes. Its aggressive nature and limited targeted therapy options underscore the 
urgent need for innovative research and improved healthcare strategies. 

The missing residues of NF-κB protein (PDB: 4G3D [178]) were modeled using BhageerathH+ [179-
181] via homology modeling by giving the sequence of the protein (UniProt ID: Q99558) [182] as an 
input. The kinase domain of NF-κB exhibits the characteristic bilobed structure commonly found in 
protein kinases, comprising an N-terminal region primarily consisting of β-sheets and a C-terminal 
region composed of helices, which possess several distinctive attributes. Preceding the canonical 
kinase domain, a conserved N-terminal segment (residues 334–365) forms a helix-strand-helix motif. 
The initial helix (residues 334–342) extends outward from the core structure, facilitating interactions 
with adjacent molecules through contacts with the activation loop and C-terminal lobe. The adjacent 
strand (residues 345–350) and subsequent helix (residues 351–363) closely associate with the N-lobe 
of the kinase domain, with the strand contributing to a six-strand β sheet and the helix positioned 
against the catalytically significant “αC” helix. Additionally, the conserved residues at the C-terminus 
(657–675) of the minimal kinase domain adopt an extended conformation, packing against the C-lobe 
of the protein. Its active site (Fig. 3) is also predicted using AADS active site prediction software. 

 

Fig. 3: Active site of NF-κB showing the active site residues 

Similarly, target proteins were also prepared by adding missing hydrogens, followed by the 
assignment of the appropriate ionization states for the side chains of both proteins. All the 589 
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constituents were virtually screened against the target using RASPD+. Docking studies given in 
Table 1 of the top 8 compounds obtained from virtual screening were performed utilizing ParDOCK+ 
docking software, a module of Sanjeevini, and AutoDock4. 

Table 1. Binding energies of ligands NF-κB (PDB: 4G3D) predicted by ParDOCK+ and AutoDock4 
software after docking studies. (Example Link for PubChem: 
https://pubchem.ncbi.nlm.nih.gov/compound/238205; Example Link for BIMP: http://scfbio-
iitd.res.in/bimp/compound.php?compound=BIMP068258)  

PDB ID PubChem ID BIMP ID ParDOCK AutoDock 
4G3D 38222 BIMP058124 -10.2 -6.5 
4G3D 238205 BIMP068258 -11.28 -7.9 
4G3D 253793 BIMP070895 -10.26 -4.6 
4G3D 315440 BIMP093550 -9.33 -7.5 
4G3D 345138 BIMP062086 -7.7 -5.7 
4G3D 383130 BIMP051307 -10.86 -5.9 
4G3D 427204 BIMP091539 -11.96 -4.5 
4G3D 135398646 BIMP043473 -6.71 -5.7 

MD simulations were performed on all the 8 protein-ligand docked complexes for up to 100 
nanoseconds. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), 
and Radius of Gyration (RoG) were analyzed to ensure the integrity, stability, and compactness of 
the protein-ligand complex. Out of 8 protein-ligand complexes, only one ligand showed favorable 
results. The hydrogen bond analysis (Fig. 4) of the 4G3D_238205 complex showed that there is at 
least one constant hydrogen present between the ligand and main chain of Leu141 residue. 
Furthermore, a free energy analysis (Table 3) was conducted to calculate the binding affinity of the 
ligand toward the protein over time. The results demonstrated a strong and stable interaction between 
the ligand and the protein, indicating potential efficacy as an anticancer agent. 

 

Fig. 4: Hydrogen Bond Analysis of 4G3D_238205 complex 

https://pubchem.ncbi.nlm.nih.gov/compound/238205
http://scfbio-iitd.res.in/bimp/compound.php?compound=BIMP068258
http://scfbio-iitd.res.in/bimp/compound.php?compound=BIMP068258
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To get more insights into the interaction between the protein and the ligand, 2D representations of 
the binding pocket of the docked complexes and 3D representations of the binding pocket of the 
complex before and after the MD simulations are shown in Fig. 5A and 5B, respectively.  

 

Fig. 5: (A) 2D representation of the binding pocket of the 4G3D_238205 docked complex, and 
(B) Superimposed 3D representation of the binding pocket of the 4G3D_238205 complex before 
and after the MD simulations. The 3D interaction diagrams emphasize the change in orientation 
and stability of the molecules in the binding pockets. Before the MD simulations, the colors used 
in protein-ligand complexes are: ligand-pale green, protein residues-green, and hydrogen 
bonding dashes-blue. After the MD simulations, the colors used in protein-ligand complexes 
are: ligand-yellow, protein residues-pink, and hydrogen bond dashes-maroon. 

4.1.2 Case Study 02: As Antiviral Agents against SARS-CoV-2 
This case study focuses on the prioritization of phytochemicals found in the Haritaki plant as 
anticancer agents against SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) using 
the workflow given in Fig. 2. The impact of SARS-CoV-2 on individuals and societies has been 
profound. SARS, a highly contagious respiratory illness, caused widespread fear and disruption when 
it emerged in 2020. Its rapid spread highlighted the vulnerabilities of our interconnected world, 
triggering stringent public health measures and economic repercussions.  In one of previous studies, 
it has been demonstrated that Haritaki inhibits SARS-CoV-2 main protease [183]. SARS-CoV-2 [184, 
185], the virus responsible for the COVID-19 [186] pandemic, employs various proteins crucial for 
its replication and infection. Among these, the main protease (Mpro), also known as 3CLpro (3-
chymotrypsin-like protease) [187], stands out as a prime target for therapeutic intervention. Mpro plays 
a pivotal role in processing viral polyproteins, essential for viral replication, by cleaving them into 
functional proteins necessary for viral assembly and maturation. Due to its indispensable role in viral 
replication and the absence of close homologs in humans, Mpro presents an attractive target for the 
development of antiviral drugs. Numerous studies have focused on the design and screening of small 
molecule inhibitors, peptides, and natural compounds to inhibit Mpro activity, aiming to disrupt viral 
replication and mitigate COVID-19 severity. Targeting Mpro holds promise for the development of 
novel therapeutics against COVID-19 and other coronaviruses, emphasizing the importance of 
continued research into understanding its structure, function, and inhibition mechanisms. 
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The Mpro (PDB: 7BQY [188]) is a homodimeric protein consisting of two protomers, each composed 
of three domains (Domains I, II, and III). Domains I and II, spanning residues 8–101 and 102–184, 
respectively, are structured with six antiparallel β-barrels. Domain III (residues 201–303) forms an 
antiparallel globular cluster of five α-helices and is connected to domain II via an elongated loop 
region (residues 185–200). Within the crevice situated between domains I and II lies a catalytic dyad 
comprised of Cys and His residues, believed to be crucial for proteolytic activity, along with N-
terminus residues 1 to 7. The active site of the Mpro target protein is given in Fig. 6.  

 

Fig. 6. The active site of main protease Mpro showing the active site residues 

All the 589 constituents were virtually screened against the target using RASPD+. Docking studies 
(Table 2) of the top 8 compounds obtained from virtual screening were performed utilizing 
ParDOCK+ and AutoDock4. MD simulations were performed on all the 8 protein-ligand docked 
complexes for up to 100 nanoseconds. RMSD, RMSF, and RoG ensure the integrity, stability, and 
compactness of the protein-ligand complex. Out of 8 protein-ligand complexes, four ligands showed 
favorable results.  

Table 2. Binding energies of ligands against main protease Mpro (PDB:7BQY) predicted by 
ParDOCK and AutoDock4 software after docking studies. (Example Link for PubChem: 
https://pubchem.ncbi.nlm.nih.gov/compound/238205; Example Link for BIMP: http://scfbio-
iitd.res.in/bimp/compound.php?compound=BIMP068258) 

PDB ID PubChem ID BIMP ID ParDOCK AutoDock 
7BQY 8899 BIMP084541 -7.89 -4.9 
7BQY 38222 BIMP058124 -7.43 -6.0 
7BQY 238205 BIMP068258 -10.72 -7.7 
7BQY 267400 BIMP044029 -7.87 -7.7 
7BQY 354330 BIMP084543 -7.98 -6.8 
7BQY 427204 BIMP091539 -11.2 -8.6 
7BQY 4185717 BIMP084937 -8.23 -8.2 
7BQY 442793 BIMP075455 -7.36 -5.7 

The hydrogen bond analysis of all 4 protein-ligand complexes showing favorable results is shown in 
Fig. 7. The 7BQY_238205 (Fig. 7A) complex forms a maximum of 4 hydrogen bonds, and at least 2 
hydrogen bonds are consistent with main chains of Gly146 and Val148 amino acids. 7BQY_267400 
(Fig. 7B) complex also forms a consistent hydrogen bond with the Hie41 residue. On the other hand, 
7BQY_354330 (Fig. 7C) and 7BQY_4185717 (Fig. 7D) complexes form the maximum number of 

https://pubchem.ncbi.nlm.nih.gov/compound/238205
http://scfbio-iitd.res.in/bimp/compound.php?compound=BIMP068258
http://scfbio-iitd.res.in/bimp/compound.php?compound=BIMP068258
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hydrogen bonds among all the complexes. In the 7BQY_354330 complex, Thr190, Arg188, Gln192, 
Gln189, and Glu166 amino acids majorly participate in hydrogen bonding.  Similarly, in the 
7BQY_4185717 complex, Gln192, Glu166, Thr190, Arg188, and Hie41 amino acids form hydrogen 
bonds with the ligand.  

Fig. 7: Hydrogen Bond Analysis of (A) 7BQY_238205, (B) 7BQY_267400, (C) 7BQY_354330 
and (D) 7BQY_4185717 complexes. 

To gain deeper insights into the interaction between the protein and the ligand, 2D representations of 
the binding pocket of the docked complexes are shown in Fig. 8, and 3D representations of the 
binding pocket before and after the MD simulations of 100 ns are shown in Fig. 9. 

 

(a) 7BQY_238205 (b) 7BQY_267400 

  
(c) 7BQY_354330 (d) 7BQY_4185717 
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Fig. 8: 2D Representations of docked protein-ligand complexes of 7BQY_238205, 
7BQY_267400, 7BQY_354330, and 7BQY_4185717 complexes. 

(a) 7BQY_238205 (b) 7BQY_267400 

  
(c) 7BQY_354330 (d) 7BQY_4185717 

  
Fig. 9: Superimposed images of the structures of the protein-ligand complexes before and after 
the MD simulations. (a) 7BQY_238205, (b) 7BQY_267400, (c) 7BQY_354330 and (d) 
7BQY_4185717 complexes. The 3D interaction diagrams emphasize the change in orientation 
and stability of the molecules in the binding pockets. Before the MD simulations, the colors used 
in protein-ligand complexes are: ligand-pale green, protein residues-green, and hydrogen 
bonding dashes-blue; After the MD simulations, the colors used in protein-ligand complexes 
are: ligand-yellow, protein residues-pink, hydrogen bond dashes-maroon. 

Table 3 presents a comprehensive analysis of the binding affinities of various ligands with specific 
protein structures, utilizing different computational methods to predict the binding free energies. 
Lower binding free energy values generally indicate stronger interactions, implying better inhibitory 
potential. In the case of the protein with PDB ID 7BQY, the MMGBSA method predicts a binding 
free energy of -49.51 kcal/mol, which is indicative of a strong interaction. The MMPBSA and 
MMBAPPL+ methods predict binding free energies of -11.19 kcal/mol and -10.85 kcal/mol, 
respectively. Comparing another ligand with PubChem ID 267400 and BIMP ID BIMP044029 
binding to the protein 7BQY, the MMGBSA method predicts a binding free energy of -40.99 
kcal/mol. The MMPBSA and MMBAPPL+ methods show binding free energies of -6.11 kcal/mol 
and -9.23 kcal/mol, respectively. For the ligand with PubChem ID 354330 and BIMP ID 
BIMP084543 binding to the protein 7BQY, the predicted binding free energies are -28.26 kcal/mol 
(MMGBSA), -5.35 kcal/mol (MMPBSA), and -8.06 kcal/mol (MMBAPPL+). Lastly, the ligand with 
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PubChem ID 4185717 and BIMP ID BIMP084937 binding to the protein 7BQY shows binding free 
energies of -44.65 kcal/mol (MMGBSA), -11.51 kcal/mol (MMPBSA), and -10.21 kcal/mol 
(MMBAPPL+). All these values suggest moderate to strong interaction, reinforcing the ligand's 
potential as a good inhibitor for the 7BQY protein.  

Table 3: Binding free energies of the protein-ligand complexes predicted by MMGBSA, 
MMPBSA, and MMBAPPL+. 

PDB IDs PubChem IDs Predicted Binding Free Energies 
MMGBSA 
(kcal/mol) 

MMPBSA 
(kcal/mol) 

MMBAPPL+ 
(kcal/mol) 

4G3D 238205 -60.2 -2.5 -11.0 
7BQY 238205 -49.5 -11.1 -10.8 
7BQY 267400 -40.9 -6.1 -9.2 
7BQY 354330 -28.2 -5.3 -8.1 
7BQY 4185717 -44.6 -11.5 -10.2 

4.2 Case Study 03: ZINC Compounds against Hepatitis B Virus as Antivirals 
Chronic hepatitis B virus (HBV) infection remains a significant global health challenge [189], 
affecting approximately 257 million people worldwide and leading to severe liver diseases such as 
cirrhosis [190] and hepatocellular carcinoma [191]. Current treatment regimens, primarily based on 
nucleoside and nucleotide analogs like tenofovir and entecavir, aim to suppress HBV replication 
[192]. However, these therapies often require lifelong administration, can lead to the development of 
drug-resistant HBV strains, and rarely achieve the complete loss of hepatitis B surface antigen 
(HBsAg), a crucial therapeutic endpoint. Therefore, there is a pressing need for alternative therapeutic 
strategies that can effectively target HBsAg to achieve better clinical outcomes. 
A case study [193] aimed to identify and evaluate small molecule inhibitors that can bind to HBsAg 
with high affinity and effectively inhibit its production and the secretion of hepatitis B virions, 
including strains resistant to existing treatments. To achieve this, a combination of computational 
virtual screening, molecular docking, and molecular dynamics simulations was employed to sift 
through a vast library of compounds, seeking those with high binding affinity for HBsAg. The ZINC 
database, which contains millions of commercially available compounds, was used as the source for 
the initial screening. This comprehensive approach allowed for the efficient evaluation of the 
potential anti-HBV activity of numerous compounds. 
The study began with the virtual screening of one million molecules from the ZINC database using 
advanced computational techniques. This process involved several steps. First, virtual screening 
rapidly evaluated the binding potential of a vast number of compounds against HBsAg. Virtual 
screening is a crucial initial step that helps narrow down the vast library to a manageable number of 
promising candidates. Next, the top candidates from the virtual screening were subjected to molecular 
docking simulations to predict their binding modes and affinities. This step involved placing the 
molecules in the binding site of HBsAg and assessing their interactions. The docking scores provided 
insights into how well each compound could potentially inhibit HBsAg. 
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Table 4: Docking Results by ParDOCK, SwissDock, and AutoDock with the selected ZINC 
compound with HBsAg.  

ZINC ID IUPAC NAME ParDOCK SwissDock AutoDock 

ZINC2045137
7 

(2E)-3-(4-Methoxyphenyl)-1-[4-
(3-{[4-(3pyridinylmethyl)-1-
piperazinyl]methyl}phenoxy)1-
piperidinyl]-2-propen-1-one 

-11.1 -8.1 -8.3 

 
To further refine the selections, molecular dynamics simulations were performed. This allowed for 
the study of the stability of the compound-HBsAg complexes over time, ensuring that the binding 
was not only strong but also stable. The molecular dynamics simulations provided dynamic insights 
into the interaction between HBsAg and the potential inhibitors, helping understand the stability and 
efficacy of the binding in a more realistic biological context. 
 
Table 5. Predicted binding free energies for Molecule 5 against HBsAg calculated using 
MMBAPPL and AMBER (for average values during MD simulations). 

ZINC ID MMBAPPL Score 
(kcal/mol) 

MMGBSA 
(kcal/mol) 

MMPBSA 
(kcal/mol) 

ZINC20451377 -8.19 -50.01 -16.99 

 
Following the computational phase, a subset of compounds was selected for experimental validation. 
The selected compounds underwent a series of tests to determine their cytotoxicity profiles and anti-
HBV activities. A widely accepted HBV cell culture model was used for these experiments, providing 
a reliable platform to evaluate the efficacy and safety of the compounds. The cytotoxicity tests were 
crucial to ensure that the compounds were not harmful to the host cells, while the anti-HBV activity 
assays measured the compounds' ability to inhibit HBsAg production and HBV virion secretion. 
One compound, in particular, stood out during these tests: ZINC20451377. This small molecule 
demonstrated a high binding affinity for HBsAg, with a KD of 65.3 nM as determined by Surface 
Plasmon Resonance (SPR) spectroscopy. SPR is a powerful technique that allows real-time 
measurement of the interaction between molecules, providing precise binding affinity data. The high 
affinity indicated that ZINC20451377 was very effective at binding to HBsAg, a crucial first step in 
inhibiting its function. 
In vitro studies revealed that ZINC20451377 effectively inhibited HBsAg production and hepatitis B 
virion secretion at low micromolar concentrations (10 μM). These findings were significant because 
they demonstrated that ZINC20451377 could effectively reduce the levels of HBsAg and the release 
of infectious virions, which are critical for the spread and persistence of HBV infection. Moreover, 
ZINC20451377 was also efficacious against an HBV quadruple mutant (CYEI mutant) resistant to 
tenofovir, one of the most commonly used antiviral drugs for HBV. This resistance often complicates 
treatment, making it essential to find new therapies that can overcome it. 
The identification of ZINC20451377 highlights a significant advancement in HBV therapeutic 
research. Its high affinity for HBsAg and efficacy in inhibiting viral production, even in drug-resistant 
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strains, suggest it could be a potent alternative to existing treatments. The use of computational 
screening followed by rigorous in vitro validation proved to be an effective strategy for discovering 
new potential HBV inhibitors. 
In conclusion, the study identified a novel small molecule inhibitor, ZINC20451377, which exhibits 
strong anti-HBV properties. Its ability to bind HBsAg with high affinity and inhibit virus production 
and secretion, including in tenofovir-resistant strains, underscores its potential as a therapeutic agent. 
Further preclinical and clinical testing is warranted to establish its efficacy and safety profile fully. 
Future directions include comprehensive preclinical studies to assess the pharmacokinetics, 
pharmacodynamics, and toxicity profile of ZINC20451377, as well as mechanistic studies to 
investigate the molecular mechanisms underlying the inhibition of HBsAg production and HBV 
secretion. Additionally, initiating clinical trials will be crucial to evaluate the therapeutic potential 
and safety of ZINC20451377 in patients with chronic HBV infection. Exploring the potential of 
ZINC20451377 in combination with existing HBV therapies could also enhance efficacy and reduce 
the risk of resistance development. This case study demonstrates the successful application of 
computational and experimental approaches in identifying a promising new therapeutic candidate for 
the treatment of chronic HBV infection. 

5. Challenges 
Despite the significant advancements in CADD, prioritizing candidate drugs through virtual 
screening, molecular docking, and MD simulations remains fraught with several challenges [194]. 
These challenges impact the efficiency and accuracy of identifying viable drug candidates and can 
hinder the drug discovery process. 

i. Accuracy of Computational Predictions: One of the foremost challenges is the accuracy of 
computational predictions. Virtual screening and molecular docking rely on algorithms that predict 
the binding affinity of small molecules to target proteins. However, these predictions can be 
compromised by inaccuracies in the scoring functions used to evaluate binding interactions. Scoring 
functions often fail to capture the full complexity of molecular interactions, leading to false positives 
(inactive compounds predicted as active) and false negatives (active compounds overlooked). 

ii. Quality of Structural Data: The quality of the structural data used in these simulations is critical. 
Inaccurate or incomplete structural information about the target protein can significantly impact the 
outcome of virtual screening and docking studies. Experimental methods such as X-ray 
crystallography and NMR spectroscopy, which provide these structures, are not always able to 
capture all possible conformations of a protein, particularly its dynamic states. This limitation can 
lead to incomplete or misleading representations of the binding site. 

iii. Computational Costs and Resources: The computational cost associated with high-throughput 
virtual screening, extensive molecular docking, and detailed MD simulations is substantial. These 
processes require significant computational power and time, especially when dealing with large 
libraries of compounds or conducting long-term simulations. Small research labs with limited access 
to high-performance computing resources may find these requirements prohibitive. 

iv. Integration of Protein Flexibility: Proteins are inherently flexible, undergoing conformational 
changes that can significantly affect ligand binding. Traditional docking methods often assume a 
static protein structure, which does not account for this flexibility. While MD simulations can provide 
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insights into protein dynamics, integrating these dynamic aspects into docking and screening 
workflows remains a complex task. Accurately modeling and predicting how these conformational 
changes impact binding interactions is an ongoing challenge. 

v. Correlation Between in silico and in vitro Results: There is often a gap between in silico 
predictions and in vitro or in vivo experimental results. Computational models may not always 
accurately replicate the biological environment, leading to discrepancies between predicted and actual 
biological activity. This lack of correlation necessitates extensive experimental validation of 
computational hits, which can be time-consuming and resource-intensive. 

vi. Handling Large Data Volumes: Virtual screening, docking, and MD simulations generate vast 
amounts of data. Efficiently managing, analyzing, and interpreting this data to prioritize the most 
promising drug candidates is a significant challenge. Advanced data analytics and machine learning 
techniques are increasingly employed to tackle this issue, but these approaches also require expertise 
and robust computational infrastructure. 

vii. Validation of Computational Methods: Continuous validation and benchmarking of 
computational methods against experimental data are essential to maintain their reliability. However, 
the iterative process of refining algorithms and validating them with experimental data is resource-
intensive and requires close collaboration between computational and experimental researchers. 

Addressing these challenges necessitates a multifaceted approach involving advancements in 
computational algorithms, improved integration of experimental and in silico data, enhanced 
computational resources, and robust validation frameworks. By overcoming these hurdles, the drug 
discovery process can become more efficient, accurate, and ultimately successful in identifying and 
prioritizing candidate drugs. 

6. Future Perspectives 
The future of drug repurposing [195] through virtual screening, docking, and simulations is set to 
transform pharmaceutical research and development, leveraging advanced computational methods to 
uncover new therapeutic uses for existing drugs. These techniques will play an increasingly important 
role in identifying repurposing opportunities addressing the need for efficient and cost-effective drug 
development. As computational power and algorithm efficiency continue to improve, high-
throughput virtual screening will enable the rapid evaluation of extensive libraries of approved drugs 
against various targets. This capability is particularly valuable for identifying and repurposing 
candidates for emerging and neglected diseases where traditional drug development timelines are too 
slow to meet urgent public health needs. 

MD simulations will also undergo significant advancements, providing deeper insights into drug-
target interactions. As simulation algorithms and force fields become more sophisticated, they will 
enable more accurate modeling of complex biological systems. These improvements will help 
researchers better understand the dynamic behavior of drugs within different biological contexts, 
revealing potential repurposing opportunities that static models might miss. Enhanced MD 
simulations will elucidate the mechanisms by which drugs interact with their targets, facilitating the 
optimization of existing compounds for new therapeutic applications. 
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In the context of personalized medicine [196, 197], the discovery of new molecules and drug 
repurposing will increasingly intersect with individualized treatment approaches. By integrating 
patient-specific genomic and proteomic data into virtual screening and docking workflows, 
researchers can identify existing drugs that are most likely to be effective for individual patients. This 
personalized approach will optimize therapeutic outcomes and minimize adverse effects, offering 
more targeted and patient-centric treatment options. The convergence of drug repurposing and 
personalized medicine holds great promise for improving healthcare by delivering tailored therapies 
that are both effective and safe. 

Collaborative databases and open science initiatives will play a crucial role in the future of drug 
discovery. Shared repositories of high-quality molecular and clinical data will enable researchers 
worldwide to contribute to and benefit from collective efforts. Open access to computational tools 
and datasets will democratize the drug discovery process, fostering innovation and accelerating the 
identification of new therapeutic uses for existing drugs. Collaborative platforms will facilitate the 
pooling of expertise and resources, driving forward the field and ultimately enhancing global health 
outcomes. 

In parallel, the discovery of drugs from natural products [198] is set to be reinvigorated by modern 
computational techniques. Natural products derived from diverse biological sources, such as plants, 
microorganisms, and marine organisms, offer a rich chemical space that is often underexplored by 
synthetic libraries. Virtual screening, docking, and simulations will streamline the identification and 
optimization of bioactive compounds from these natural sources. As high-throughput virtual 
screening becomes more advanced, researchers will be able to efficiently explore vast libraries of 
natural products, rapidly identifying those with potential therapeutic applications. 

Structural elucidation and modeling of natural products, which have traditionally posed challenges 
due to their complexity, will be greatly enhanced by improved molecular docking and simulation 
techniques. These advancements will enable more accurate modeling of the intricate structures of 
natural products, facilitating the identification of their interactions with biological targets. By 
leveraging the unique structural features and bioactivities of natural products, researchers can 
discover new drug candidates with novel mechanisms of action, offering innovative solutions to 
pressing medical challenges. 

The seamless integration of virtual screening, docking, and simulations [199, 200] into new molecule 
and natural product discovery workflows will also foster the development of multi-target drugs. 
Complex diseases, such as cancer and neurodegenerative disorders, often involve multiple biological 
pathways. Identifying compounds that can modulate several targets simultaneously can enhance 
therapeutic efficacy and reduce the likelihood of resistance. This multi-target approach, supported by 
advanced computational techniques, will open new avenues for treating multifactorial diseases more 
effectively. 

7. Conclusion 
The adoption of CADD techniques has revolutionized the drug development process, providing a 
robust, efficient, and cost-effective framework for prioritizing drug candidates. By leveraging virtual 
screening, molecular docking, and MD simulations, researchers can predict and evaluate the 
interactions between drug candidates and biological targets with high precision. Virtual screening 
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expedites the identification of promising molecules from extensive compound libraries, while 
molecular docking elucidates their preferred binding orientations and modes within target proteins. 
MD simulations further contribute by offering a dynamic understanding of the stability and 
conformational adaptability of protein-ligand complexes over time in a near-physiological milieu. 
Collectively, these computational methods enhance the rational design and optimization of 
therapeutics, ultimately increasing the success rates and reducing the financial burden of drug 
discovery. This chapter underscores the transformative impact of CADD on modern drug discovery, 
illustrating its efficacy through specific examples and case studies that highlight its vital role in 
advancing medical science. 
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