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Synopsis 

Electrostatic potentials around DNA are obtained by solving the nonlinear Poisson-Boltzmann 
(PB) equation. The detailed charge distribution of the DNA and the different polarizabilities of 
the macromolecule and solvent are included explicitly in the calculations. The PB equation is 
solved using extensions of a finite difference approach applied previously.to proteins. Electrical 
potentials and ion concentrations are compared to those obtained with simpler models. It is found 
that the shape of the dielectric boundary between the macromolecule and solvent has significant 
effects on the calculated potentials near the surface, particularly in the grooves. Sequencespecific 
patterns are found, the most surprising result being the existence of positive regions of potential 
near the bases in both the major and minor grooves. The effect of solvent and ionic atmosphere 
screening of phosphate-phosphate repulsions is studied, and an effative dielectric function, 
appropriate for molecular mechanics simulations, is derived. 

INTRODUCTION 

Nucleic acids are highly charged molecules and electrostatic interactions 
must play an important role in many aspects of their structure and function. 
It has become clear, for example, that electrical forces are an important 
component of protein-DNA and drug-DNA intera~tions.'-~ A complete model 
of electrostatic effects in DNA should include an accurate description of the 
shape and charge distribution of the macromolecule and a rigorous treatment 
of DNA-solvent interactions. This has been difficult to achieve. 

Theoretical studies of nucleic acids have to some extent been divided into 
two distinct areas. One area has focused almost entirely on electrostatic 
properties such as the potentials and ion atmosphere that surround 
the macromolecule. These have often been obtained from solutions to the 
Poisson-Boltzmann (PB) equation for simplified models of DNA. The other 
area has focused on details of DNA conformation and dynamics, for example, 
as in molecular mechanics simulations, but has tended either to ignore solvent 
and ionic strength effects, or to treat them in an ad hoc fashion. The present 
study presents a method for treating electrostatic interactions in DNA that 
combines some of the best feritures of both approaches. In particular, solutions 
to the PB equation are obtained numerically for a detailed atomic-level 
description of the DNA. This makes it possible to study electrostatic poten- 
tials close to the surface of DNA where simplified geometric models cannot be 
valid, while incorporating environmental effects (i.e., effects due to solvent and 
ion atmosphere) into the calculation of properties that depend upon the 
details of DNA conformation. 
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The approach introduced in this work is based upon finite difference 
solutions to the PB equation (the FDPB method) for molecules of arbitrary 
shape and charge distribution. An important feature of the FDPB method is 
that i t  can explicitly account for the different polarizabilities of the macro- 
molecule and solvent, a factor shown to have important consequences in 
proteins where the method has been previously a ~ p l i e d . ~ . ~  The application of 
the FDPB method to DNA has required a number of developments, including 
obtaining numerical solutions to the nonliner PB equation and the introduc- 
tion of periodic boundary conditions. These are described in the methods 
section below. The remainder of this section briefly summarizes previous work 
in the general area of DNA electrostatics and outlines its relationship to the 
current study. 

The simplest electrostatic models of DNA treat the molecule either as a 
string of point charges or as a rod with a uniform charge density a t  its surface, 
around which counterions can condense above a critical charge dens it^.^ The 
concept of condensation has been very successful in explaining some colliga- 
tive and thermodynamic properties of polyelectr~lytes.'-~ Zimm and LeBret" 
redefined the concept of counterion condensation and showed that it arises 
from solutions to the PB equation in cylindrical geometry. Other work- 
ers have also examined solutions to the PB equations for charged 
cylinders8."s12 and found an accumulation of counterions near the DNA even 
at low ionic strengths, in qualitative agreement with the condensation model. 

The use of the PB equation for polyelectrolytes has been criticized princi- 
pally because it neglects the finite size of the solvent ions and the spatial 
correlations between them.l3-I5 However, quantitative comparisons have been 
made of cylindrical solutions to the PB equation with Monte Carlo simula- 
tions16-18 and hypernetted chain (HNC) calc~lations'~ where discrete ion 
effects can be included explicitly. These studies have shown that for univalent 
ions with radii that are small compared with the thickness of the DNA strand, 
the nonlinear PB equation is a reasonable approximation. The PB equation 
underestimates the concentration of counterions very close to the DNA by 
about 12-18%'8*19 but otherwise agrees well with the more detailed solutions 
in spite of its continuum treatment of the solvent. On the other hand, Monte 
Carlo and HNC calculations have not been extended to account for the shape, 
charge distribution, and dielectric boundary of DNA in solution. 

Calculations based on cylindrical models, however rigorously they are 
applied, are inherently limited when describing electrostatic features close to 
DNA, since they neglect the distribution of charge and the grooved structure 
of the molecule. Sequence-specific electrostatic phenomena, if they occur, 
must arise from the different partial charge distribution of the bases and the 
location of these charges with respect to each other and to the dielectric 
boundary. Some of the earliest calculations on electrostatic potentials around 
nucleic acids including detailed descriptions of partial charges were carried 
out by'Pullman and co-workers.20 The calculations were carried out using a 
vacuum dielectric constant and hence gave values of the potential near the 
DNA that were too high to be biologically relevant (hundreds of kilocalories 
per mole). Weiner et a1.21 performed similar calculations using coulombic 
potentials combined with a distance-dependent dielectric constant that is 
intended to account, in an ad hoc way, for the effects of solvent screening. 
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Neither of these models treats solvent and ion screening or the dielectric 
boundary satisfactorily, but both studies point to the possibility of base 
sequence specific electrostatic effects. 

The first attempts to use the PB equation to obtain electrostatic potentials 
around DNA while including a detailed description of its charge distribution 
were carried out by Klein and P a ~ k . ~ * ~ ~  Their method involves an iterative 
solution to a combination of coulombic potentials from the fixed macromolec- 
ular charges and the distribution of mobile charges obtained from the Boltz- 
mann equation. This is equivalent to a solution of the PB equation with a 
uniform dielectric constant throughout space. To investigate the effect of 
dielectric discontinuity. Troll et al.24 used a clay model of DNA in an 
electrolyte tank to estimate the electrostatic interactions between charges. 
Although the methods used are very different from that of the present work, 
both studies attempt to investigate the effect of the dielectric discontinuity on 
the electrostatic potentials of DNA. 

The only other attempt reported so far to incorporate the effects of the 
dielectric boundary in calculations on DNA was based on the Tanford- 
Kirkwood model modified to account for the solvent accessibility of the 
individual charges.% These calculations predict the highst concentrations of 
the mobile cations in the minor groove of DNA, in agreement with Klein and 
P a ~ k , ~ , ~ ~  and provide better agreement with ion distribution data obtained 
by charge transfer experiments than do PB solutions for a cylindrical, uniform 
dielectric While this and related workn illustrates the importance of 
dielectric boundary effects, a spherical model is inherently limited when 
describing the detailed shape of a complex molecule such as DNA. 
As pointed out above, molecular mechanics simulations account for the 

detailed atomic structure of DNA but encounter difficulties in their treatment 
of the solvent. In fact, standard force fields will severely distort the DNA 
structure unless drastic assumptions are used to introduce the effects of 
solvent. For example, Levittm set the phosphate charge to zero under the 
assumption that the solvent and counterions would totally screen their inter- 
actions. Tidor et aLm reduced the phosphate charge to -0.2 to account for 
ionic strength effects and used a distance-dependent dielectric constant to 
represent the effects of solvent screening. Prabhakaran and Harveym and Rao 
and K ~ l l m a n ~ ~  carried out molecular mechanics studies of the energetics 
associated with the formation of intercalation sites, again using a distance- 
dependent dielectric constant to treat electrostatic interactions. These empiri- 
cal approximations were necessary components in early efforts to investigate 
DNA structure and dynamics, but while computationally convenient, they are 
not really satisfactory. The distance-dependent dielectric constant, for exam- 
ple, tends to underestimate solvent screening of charges near the surface of a 
macr~rnolecule,~~ while the use of scaled phosphate charges precludes the 
study of salt effects on DNA structure and dynamics. 

Calculations have been carried out on small DNA fragments including 
water and counterions explicitly %; however, the computational demands 
involved in including many watem and ions in DNA simulations limits the 
range of the applicability of this approach. Moreover, the ability of current 
water models to account for dielectric behavior and ion solvation is still 
unclear.34 For this reason, it would appear to be of considerable value to use 
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the PB equation as a basis for obtaining effective dielectric constants that can 
be incorporated into molecular mechanics simulations. 
As outlined above, in this work we use an approach (the FDPB method) 

that treats the macromolecule in atomic detail, and accounts for the effects of 
the dielectric boundary, solvent screening, and salt concentration through 
numerical solutions to the PB equation. Our previous work on proteins has 
shown that this approach provides an intuitively understandable picture of 
electrostatic phenomena while providing the basis for accurate quantitative 
c a l ~ u l a t i o n s . ~ ~ ~ ~ ~ ~  Specific questions addressed in this study on DNA include 
the effects of shape and dielectric boundary on potentials around and at the 
surface of DNA, the salt concentration dependence of counter ion distribu- 
tion, the effect of the dielectric boundary and salt concentration on phos- 
phate-phosphate interactions, and the effect of base sequence on electrostatic 
potentials. 

METHODS 

Model 

The DNA molecule is described in terms of its three-dimensional structure 
as determined by the coordinates of all its atoms. The coordinates of the 
idealized form of B-DNA were generated from the local coordinates of Arnott 
and H~kins.~'  The decamer sequence chosen here contains the Eco RI en- 
donuclease recognition site and the netrospin binding site, and is the same as 
that studied experimentally by Marky and Breslauer.% 

The details of the model have been described previously for ~ r o t e i n s . ~ ~ ~ ~  
Charges are assigned to the center of each atom and are considered to be 
embedded in a low dielectric medium consisting of the volume enclosed by the 
solvent-accessible surface of the nucleic acid. In this work, the values of the 
charges were taken from the AMBER force field.39 The surrounding solvent is 
treated as a continuum of dielectric constant 80 with an electrolyte behaving 
according to the PB equation. In order to solve the PB equation, the DNA 
and a region of surrounding solvent are mapped onto a 65 X 65 X 65 point 
cubic lattice. The midpoint of each grid line joining two lattice points is 
assigned a dielectric constant of value 80 if it lies in the solvent, and of value 2 
if it lies within the solvent accessible volume of the DNA molecule. Lattice 
points lying further than one ion exclusion radius outside the molecular 
surface are assigned a Debye-Huckel parameter corresponding to the required 
salt concentration, while all other latti$e points are assigned a value of zero. 
The ion exclusion radius is taken as 2.0 A (corresponding approximately to the 
hydrated radius of a sodium ion) and the salt is assumed to be a 1:l 
electrolyte. Each atomic point charge, which generally does not lie on a lattice 
point, is distributed over the eight closest lattice points in such a way as to 
preserve the monopole and dipole moments of the charge distribution.6 
All calculations are performed with an explicit representation of one com- 

plete turn of DNA within the lattice. This corresponds to a spacing between 
lattice points of about 0.53 A. In cases where potentials at distances greater 
than 16 are of interest, three turns of DNA are used, giving a lattice spacing 
of 1.6 A. Calculations were performed with the DelPhi p r ~ g r a m ~ * ~ ~  running on 
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a Convex C1-XP computer and/or on a Star ST-100 array processor hosted 
by a Digital microvax. 

The Nonlinear PB Equation 

The calculation of the potential is performed as described p re~ ious ly ,~ .~~  
except that the PB equation is not linearized due to the highly charged nature 
of DNA: 

v . (c(x)v+(x)) - ~~(x)sinh[+(x)]  + 47rpf(x) = o (1) 

where + is the potential expressed in units of kT/e, k being Boltzmann's 
factor, T the absolute temperature, and e the unit electron charge; c is the 
dielectric constant; and pr is the fixed chargc density. K is the modified 
Debye-Huckel parameter (which does not include the dielectric constant), 
given by 

(2) = c'12K 

where 1 / ~  is the Debye length. +, E, K, and p, are,all functions of the vector 
coordinate x. To obtain a finite difference representation of Eq. (l), sinh(+) is 
expanded in a power series: 

sinh(+) = C+2n+1/(2n + I)! (3) 

For each lattice point, a finite difference equation is constructed that relates 
the potential at  that point to the potential at  its six neighboring points. This 
results in simultaneous equations of the form 

Except for points at  the edge of the lattice, where some value for the potential 
must be assumed (see below), these equations are solved by iterative relax- 
ation. An initial guess is made for the potentials a t  each point (usually zero 
for convenience), and a new value for the potential at each point, #,, is 
obtained from the previous value at that point, Go, the previous values of 
potential at the neighboring points, Cpi ( i  = 1-6), the dielectric constants 
associated with the grid lines connecting the point to its six neighbors, ci, and 
the Debye-Huckel parameter for that point, K. This iteration process is 
continued until convergence is obtained (a mean change in potential per 
lattice point of less than 10-5kT/e was used here). 

The t e r n  in powers of + in the denominator on the right-hand side of Eq. 
(4) represent successive corrections to the linear PB equation. With the charge 
densities and salt concentrations used in modeling DNA in this work, it was 
found that inclusion of three terms of the power series reduced the average 
error in final potential due to truncation to less than 3%. Inclusion of the 
nonlinear terms in Eq. (4) results in an implicit equation, with Go occurring on 
both aides of the equation. In some cases, particularly at high salt concentra- 
tions (large K ) ,  iteration of these equations can become numerically unstable, 
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the potential values oscillating or diverging to infinity. In these cases, stability 
can be recovered by underrelaxation, i.e., by multiplying the computed change 
in potential obtained from Eq. (4), A+, = (+& - +,), by a relaxation parame- 
ter, typically 50-80%, before updating the potentials. The stability of the 
iteration is indicated by smooth convergence, and independence of the final 
potential values on the initial guess (further details of finite difference and 
relaxation methods can be found in any standard numerical methods book, 
see, e.g., Ref. 40). 

Boundary Conditions 

Lattice points on the boundary of the grid lack one or more neighboring 
points and must be treated separately. A method for introducing periodic 
boundary conditions was developed for this work in order to be able to 
represent the field of an infinite piece of DNA. The DNA was mapped into the 
grid so that the helical axis was aligned along the Z axis of the grid, with 
exactly one or three turns (10 or 30 base pairs for B-DNA) inside the grid. To 
iterate the potentials at  the boundary points on the Z-axis edges of the grid, 
values for the potential a t  the missing neighbors were taken from the corre- 
sponding points on the opposite edge of the grid. On the X and Y axis edges of 
the grid, the potential +i a t  the i th grid point was calculated analytically 
using the Debye-Huckel equation? 

where the sum is over j, for all the fixed charges, q,, and ri, is the distance of 
the j t h  charge from the ith boundary point. This expression approximates 
the analytical solution far from the molecule. 

Tests of Accuracy 

The numerical algorithm used here has been tested previously36 on spherical 
models where analytical solutions to the linear PB equation are known. The 
numerical results agree with the analytical solutions over a range of condi- 
tions to within a few percent, except within one to two grid spacings of a 
charge or a dielectric boundary, where the errors range from 5-15%. We have 
also tested the method on uniformly charged cylindrical models using the 
nonlinear PB equation, making comparisons to numerical solutions obtained 
by the Runge-Kutta method.g." The results are accurate everywhere to 
within 1%, except near the dielectric boundary, where errors up to 7% are 
encountered. Thus, our numerical method succeeds in reproducing the results 
of previous studies on simplified models of DNA. 

Ion Distribution 

The net charge density, p(x), and the counterion concentration, p,(x), a t  
any point in solution were calculated from the potential, +, and the bulk salt 
concentration, C,, using the Boltzmann equations 

p = 2C, . sinh( +(x)) (6) 

p + =  Co.xP(-+(x)) (7) 
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The radially averaged charge density, p( r), was calculated from 

p ( r )  = (2CO. sinh(+(r, 2, W),,, ( 8 )  

where r, z, 8 are cylindrical coordinates defined relative to the helical axis. 
From the averaged charge density, the radial distance within which any 
fraction of the total counterion charge is located can be calculated. For 
example, with our representation of DNA the radius containing 76% of all the 
counterion charge, R,, (where 0.76 is the fraction of condensed charge 
obtained with the Manning model’ for the linear charge density corresponding 
to B-DNA), can be compared with the so-called Manning radius in the 
cylindrical PB model of Zimm and LeBret’O and the uniform dielectric model 
of Pack and c o - w o r k e r ~ . ~ ~ * ~ ~  

Effective Dielectric constants 

The effective dielectric constant, which is perhaps better termed a screening 
parameter, ce, for the interaction between any two charged atoms i and j ,  
separated by a distance rlJ, is commonly defined as the ratio of the strength of 
interaction between the two charges (obtained either from experimental data 
or some form of calculation), compared to that which would occur in vacuum, 
+” (i.e., using a dielectric constant of 1 in Coulomb’s law). In this work, the 
calculated interaction is obtained by removing all fixed charges except a t  one 
of the atoms (the “source” charge) and calculating the potential + at  the 
other atom(s). Thus, 

‘:J = @V/@ = q/+rZJ (9) 

where q is the charge on the source atom. When ions are present in the 
solvent, very effective screening can occur, resulting in screening constants of 
several hundred. I t  is convenient in these cases to redefine the screening 
constant as 

€:J = +d/+ = q * exP(-Krt~)/+ri~ (10) 

which is the ratio of the interaction between two Debye-Huckel-type point 
ions in ionic solution, +d, and that calculated from our solutions to the 
nonlinear PB equation. Thus in cases where no salt is present, deviations of c e  
from the value of 80 (expected for two charges interacting in water) represent 
the effect on the screening of the shape and position of boundary between 
water and the less polarizable DNA. When salt is present, deviations from a 
value of 80 will also reflect the effect of exclusion of mobile ions from DNA, 
and alteration in their distribution due to the low dielectric region. 

Each of the 20 phosphates in the middle turn of a three-turn piece of DNA 
was charged separately and the potential due to that charge at  each other 
phosphate was evaluated. The potentials thus obtained for equivalent pairs of 
phosphates were averaged over all 20 phosphates, and the effective dielectric 
constants were determined from Eq. (9) a t  zero salt concentration and from 
Eq. (10) a t  physiological salt concentration (0.15M). Since each phosphate is 
positioned slightly differently with respect to the grid, this averaging greatly 
improves the precision of the finite difference calculation.36 
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RESULTS 

Electrical Potentials and Ion Concentrations 

Electrostatic potentials around DNA a t  physiological salt concentration 
obtained from various models are shown in Fig. 1. The figure shows two- 
dimensional potential contours in a midplane slice perpendicular to the helix 
axis. Contours are drawn at intervals of 0.5 kT/e from -0.5 to -5 kT/e.  
Regions of positive potential are shown by solid shading. The Debye length is 
8 A in all cases. Figure l(a) is obtained for a linear lattice of charge. This 
model, and the model of a cylinder with a uniform charge density on the 
surface, studied by Klein, Anderson, and Recordg and by Queron and Weis- 
buch," give identical potentials in solution up to and including the surface. 
Figure 1 (b and d) are obtained by solving the PB equation using coulombic 
potentials and therefore assume a dielectric constant of 80 both inside and 
outside the macromolecule. This is essentially the model assumed by Klein 
and Pack,22 although their method of solving the PB equation differs from 
that used here. Figure 1 (c, e, and f )  display the potentials obtained from the 
PB equation where the DNA and solvent are assigned dielectric constants of 2 
and 80, respectively. Since Fig. l(b) and Fig. l(c) are obtained from identical 
charge distributions [as is the case for Fig. l(d) and Fig. l(e)], the differences 
in the potentials are due to the existence of a dielectric boundary in fig. l(c) 
and Fig. l(e). 

The - 0.5 kT/e contour (the outermost) is essentially circular in all models. 
The contours become increasingly more elliptical as the distance from the 
DNA decreases. In Figure 2 the potentials of Fig. l(c) along radii passing 

- 
0) 
\ 
I- 
Y - 
H 

.r( 
m 
ct 
C 
0) 
U 
0 
0. 

Fig. 2. 
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D i s t a n c e  f r o m  A x i s  CAI 
Radial profiles of potential along a line perpendicular to the helix axis passing through 

the center of the minor groove (dashed line) and through a phosphate group (dotted line) of the 
DNA model in Fig. l(c) and for the cylindrical model of Fig. l(a) (solid line). 
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Radial  Distance Ch 
Fig. 3. Radially averaged net charge density in solvent around DNA as a function of distance 

from the helical axis for uniform dielectric of 80 (dashed lines) and for the two dielectric model 
(solid lines). Salt concentrations are indicated on the curves. 

through the center of the minor groove and through a phosphate group are 
plotted along with potentials obtained from the cylindrical model of Fig. l(a). 
The location of the surface is denoted by arrows. It is clear from Fig. 2 that 
the cylindrical model is accurate beyond about 20 A, although it  does fairly 
well even a t  shorter distances. On the other hand, the 9.5 A radius typically 
used in cylindrical models does cut off the negative potential a t  values that 
are too small. On the basis of Fig. 2, a 5 or 6 A cylindrical radius might yield 
more realistic potentials close to the surface of the DNA in the grooves. It is 
also worth pointing out that the potential 2 A and farther from the surface of 
the minor groove (which is very close to the helical axis) is more negative than 
the potentials at the same distance from the surface of the phosphate group, 
even though the potential on a line going through the phosphates is more 
negative for a given distance from the helix axis. 

Comparing Fig l(b) and Fig. l(c), the effect of representing the interior of 
DNA as a low dielectric cavity does noto change the potentials due to the 
phosphates a t  distances more than 5-10 A from the surface of the molecule. 
However, the potentials inside the molecule, and outside i t  close to the 
surface, are greatly increased in the two dielectric model, particularly in 
groove regions. The field is also increased in the groove at  the molecular 
boundary, as can be seen from the more closely spaced contour lines in Fig. 
l(c) compared to Fig. l(b). 

The effects of the dielectric discontinuity can also be seen in Fig. 3, which 
compares the radially averaged distribution of net charge density obtained 
with a uniform dielectric of 80 everywhere with that using a dielectric of 2 for 
the DNA. Results are shown for the B-form of poly(dA) . poly(dT), with only 
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TABLE I 
Calculated Manning Radii as a Function of Salt Concentration 

~~ ~ 

salt 
Concentration (M) 

0.01 
0.1 
0.15 
1 .o 

19.5 k 3 
15.4 + 2 
15.4 f 2 
12.9 + 2 

the phosphates charged, at  salt concentrations of 0.01, 0.1, and 1.OM. The 
distributions are very similar at  distances more than 12 A from the axis, 
indicating that the Manning radius is insensitive to the dielectric discontinu- 
ity. However at small distances (< 8 A) corresponding to regions in the 
groove, the two-dielectric model gives as much as 50% higher counterion 
concentrations at  the two lower salt concentrations, since the lower dielectric 
constant of the DNA increases the potential in the grooves, resulting in 
greater ion accumulation. At  the highest salt concentration, where the poten- 
tials everywhere are smaller, the concentration of ions in the groove is lower 
with the two dielectric model. This is due to a repulsion of the mobile charge 
from the low dielectric, weakly charged molecular surface in the grooves (that 
is, there is an increase in self-energy of the ions in the grooves as observed by 
Troll et al.24). The ions accumulate more around the phosphates, where the 
potential is enhanced by the low dielectric molecular interior, giving rise to a 
higher net charge concentration around 10 A in the two dielectric model (top 
two curves in Fig. 3). This figure also shows that the local concentrations 
exceed 1M for all salt concentrations at distances less than 10 A, which is in 
agreement with results reported from several other models discussed above. 

The Manning radius as a function of salt concentration is shown in Table I. 
The radius increases with decreasing salt concentration, and agrees closely 
with results from other m ~ d e l s . ~ , ' ~ . ~ ~  

Base Sequence Effects 

The results shown in Fig. 1 indicate that the partial charges of the bases can 
significantly modify the electrostatic potential, particularly in regions close to 
the molecular surface. The partial atomic charges assumed in this study39 are 
collected in Table 11. In both the uniform [l(d)] and two dielectric models 
[l(e)], the bases are found to increase the negative potential in the grooves 
[compare l(d) and l(e) to l(b) and l(c), respectively] but the effect is much 
more significant in the two-dielectric model. In the latter case, inspection of 
Fig. 1 (c and e) reveals that the effect of the partial charges extends to about 
the - 2 kT/e  contour level, beyond which point the potentials are due almost 
entirely to the phosphates. 

A second effect of the partial charges that is particularly pronounced in the 
two-dielectric model is the appearance of several areas of positive potential 
inside the DNA [see Fig. 1 (e and f ) ] ,  some of which extend to the surface of 
the molecule in the grooves. The effect of base sequence on surface potential is 
shown in Fig. 4, which compares the potentials near the surface for poly(dA) - 
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TABLE I1 
Partial Atomic Chargesa on Nucleic Acid Bases (in Atomic Units) 

Atom Adenine Guanine Thymine Cytosine 

N1 
HN1 
c 2  
N2 
H1N2 
H2N2 
0 2  
N3 
HN3 
c 4  
0 4  
N4 
H1N4 
H2N4 
c 5  
CH3(C5) 
C6 
N6 
H1N6 
H2N6 
0 6  
N7 
C8 
N9 

- 0.760 

0.571 
- 

- 
- 
- 
- 

- 0.717 
- 
0.695 
- 
- 
- 
- 

-0.151 
- 
0.813 

0.339 
0.335 

- 0.793 

- 
- 0.599 
0.488 

- 0.457 

- 0.746 
0.340 
0.842 

0.324 
0.333 

- 0.758 

- 
- 0.702 
- 
0.490 

- 
- 

- 0.088 

0.714 
- 

- 
- 

- 0.472 
- 0.575 

0.428 
- 0.479 

- 0.739 
- 
1.113 

- 0.529 
- 1.012 

0.370 
0.980 

- 0.472 

- 
- 0.595 

0.097 
0.551 

- 0.572 
- 
0.938 

- 
- 0.518 
- 0.791 
- 
0.630 
- 

- 0.743 
0.338 
0.335 

- 0.230 
- 
0.377 

* k o m  Ref. 39. 

poly(dT), poly(dG) * poly(dC), and the decamer containing the Eco RI recog- 
nition sequence and netropsin binding site. The minor groove of both ho- 
mopolymer sequences is completely negative, but the poly(dA) - poly(dT) 
sequence is more negative by about 1.5 kT/e [see also Fig. 1 (e and f)].  The 
major groove in the AT sequence is relatively neutral, or weakly negative. In 
contrast,the GC sequence shows a polarity within the major groove; positive 
patches of potential appear on the C side, with a more negative G side. This 
can also be seen in Fig. l(f), where the contour lines at  -2.5 kT/e and lower 
balloon out from the DNA surface on the G side of the major groove (lower 
left-hand side), while on the C side of the groove, the contour lines are much 
closer to the surface. The decamer shows a more complex pattern of surface 
potentials, with various patches of neutral or positive potential, particularly 
near the dyad axis. 

The sign and location of the partial charges that are exposed across the 
floor of the grooves account, in part, for the observed pattern of potentials. In 
an AT pair, the minor groove in B-DNA contains N3 (A) and 0 2  (T) atoms, 
which are both negative. In a GC pair the corresponding atoms, N3 (G) and 
0 2  (C), are separated by the positive 2-amino group of guanine. Thus the 
potentials in the minor groove of an AT pair are expected to be more negative 
than for a GC pair. The major groove of an AT pair contains the negative N7 
(A), positive 6-amino group of adenine, and then the negative 04  (T). In GC 
pairs the negative N7 (G) and 06  (G) are followed by the positive 4-amino 
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Fig. 4. Schematic representation of the potentials on the surface of B-DNA for different base 
sequences at  physiological salt concentration. The DNA surface was mapped onto a cylinder that 
was cut parallel to the axis and unrolled. The helical axis is vertical, with one turn represented. 
The approximate positions of the phosphate groups are indicated by circles and the grooves are 
delimited by diagonal lines. MJ: major groove, MN: minor groove, PO,: phmphate region. 
Regions of the groove surface that are weakly negative or positive (> -0.5 kT/e)  are 
crosshatched. Regions that are strongly negative ( < - 3 kT/e)  are shaded. Regions of intermedi- 
ate negative potential are unshaded. Base sequences are (a) poly(dA) . poly(dT), @) poly(dG) . 
poly(dC), and (c) the decamer d(GCGAA"CGC); the dyad axis is indicated in the center of the 
major groove. 
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group of cytosine. Thus, the GC pair, in contrast to the AT pair, is expected to 
show a greater polarity within the major groove, as observed in Fig. 4. Of 
course, these patterns are well known and follow the sequence specificity 
associated with hydrogen-bonding donor and acceptor groups.41 What we 
have shown in this work is that the partial charges of the bases produce 
well-defined sequence-specific regions of positive and negative potential along 
the entire groove. Moreover, these regions are not simply functions of the sign 
of the partial charges since they do not appear on the surface of the DNA 
when a uniform dielectric model is used [see Fig. l(d)]. 

Effective Dielectric Constants 

Effective dielectric constants for the interaction between any two phos- 
phates were calculated for the two dielectric model at 0 and 0.15M salt 
concentration as described in the methods section. The results for poly(dA) * 

poly(dT) in the B-conformation are shown in Fig. 5 as a function of the 
angular distance between phosphates with respect to the helical axis. The 
results show that the effective dielectric constant at  zero salt concentration 
can be as high as 105 if the two charges are located on the opposite sides of 
the macromolecule, and as low as 70 if they are on the same side. This 
variation is a result of the dielectric discontinuity, which effectively excludes 
field lines from the low dielectric region. This effect cannot be obtained in any 
model with coulombic or other pairwise potentials, since for these types of 
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Fig. 5. Effective dielectric constants for the interaction between two phosphates, shown as a 

function of the angle defined by the planes containing the helical axis and each phosphate. 
Grasses indicate data for OM salt concentration and circles for 0.15M salt concentration. Solid 
lines indicate the bast fit to a harmonic function of the angle. 
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potential functions the field lines emanating from a charge are always spheri- 
cally symmetric. Over the distance of one to two turns, the effect of distance 
along the helical axis is very small, the predominant effect being the angle 
dependence. At larger distances however, the dielectric tends to 80, as in the 
uniform dielectric case (results not shown). The curve can be fitted to a 
harmonic function (upper continuous curve in Fig. 5) in angle, 

c e  = A@' + B 

with coefficients A = 7.7 f 2 x deg-2 and B = 78.6 h 3. These results 
are quantitatively very similar to those obtained by Troll et al.,24 who found 
more effective screening for interactions between locations on the opposite 
side of DNA than for locations on the same side. 

At physiological salt concentration (where the clay model system cannot be 
simply applied), the data can also be fit to a harmonic function with the same 
curvature, but shifted down, B = 56 f 3 (lower curve in Fig. 5). Notice that 
c e  a t  physiological salt concentration is actually lower than a t  zero salt 
concentration. It should be recalled from Eq. (lo), however, that c e  is multi- 
plied by an exponential term in K. The interpretation of ce ,  as defined by Eq. 
(lo), is that for values less than 80, the charges interact more strongly than 
would two Debye-Huckel-type ions in water, and for values greater than 80, 
this interaction is weaker. 

DISCUSSION 

A theoretical and computational approach has been described that makes i t  
possible to treat a variety of phenomena associated with electrostatic interac- 
tions in nucleic acids under physiological conditions. Electrostatic potentials 
are obtained from numerical solutions to the nonlinear PB equation (the 
FDPB method) based on a model of DNA that includes a detailed description 
of its charge distribution and the shape of the dielectric boundary it forms 
with the surrounding solvent. It is likely that the calculations reported here 
provide a reasonable description of solvent and electrolyte screening on the 
potentials. This expectation is based on the success of the FDPB method in 
recent studies of proteins (see, e.g., Refs. 6 and 35) and on the ability of PB 
calculations on cylindrical models of DNA to reproduce, with reasonable 
accuracy, the results obtained from Monte Car10 and HNC calculations on 
identical systems containing simple 1-1 electr~lytes. '~-'~ Judging by these 
comparisons, the approximations introduced into the PB model by treating 
the solvent and ions as a continuum are probably around 158, in return for 
the ability for detailed shape and dielectric effects to be treated. For elec- 
trolytes containing large or multivalent ions, neglect of ion size and correla- 
tion effects would introduce larger errors, although the qualitative differences 
between cylindrical or uniform dielectric models and the current model would 
be expected to remain the same. 

The relative ease with which it is now possible to describe the electrical 
potentials and ion atmosphere around DNA suggests a variety of applications. 
For example, i t  will be of interest to attempt to interpret the results of 

Na-nmr measurements of ion concentrations4' based on the results of FDPB 23 
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calculations. In this study, we have emphasized comparisons to simpler 
models for both DNA structure and DNA-solvent interactions. In particular, 
we have studied the validity of cylindrical descriptions of DNA, determined 
the effect of the dielectric boundary on the nature of the calculated potentials, 
and described a phosphate-phosphate screening function. 

With regard to the effects of molecular shape, it is found that cylindrical 
models are accurate at distances greater than about 20 A from the helical axis 
and remain qualitatively reasonable at  distances as close as about 12 A, i.e., an 
ion exclusion radius away from the phosphates, in a radial direction. However, 
close to the surface (< 10 A) and particularly in the grooves, the potentials 
are sensitive both to the shape and polarizability of the macromolecule. 

The overall effect of the dielectric boundary is to increase both the poten- 
tials and fields in the grooves, which should enhance the tendency of cations 
and dipolar groups to bind. Both negative and positive potentials occur on the 
van der Walls surface at  physiological salt concentration, but negative poten- 
tials dominate in moving radially outward from the helical axis. The poten- 
tials near the surface are on the order of a few kT/e  and appear to be 
physically reasonable. Previous calculations, which did not include the effects 
of solvent screening, produced surface potentials of many hundred kT.20 The 
electrostatic potentials exhibit a strong sequence dependence, which can be 
qualitatively understood in terms of the locations of hydrogen-bonding donor 
and acceptors. However, the magnitudes of the potentials are strongly af- 
fected by the existence of the dielectric boundary. 

A particularly striking effect of the dielectric boundary may be seen by 
comparing the potentials in the minor groove in Fig. l(d) and Fig. l(e). In the 
two-dielectric model [Fig. l(e)], the - 5  to -4 kT/e  contours balloon out 
more from the cleft of the minor groove compared to the uniform dielectric 
case [Fig. l(d)]. This difference is due to the “focusing” of the electric field of 
the bases into the high dielectric solvent and away from the low dielectric 
walls of the cleft. The effect is reminiscent of the focusing of electrio fields in 
the active site cleft of the protein superoxide dismutase.6 

It is of interest to relate the effects of the dielectric discontinuity found in 
this work to those found by Troll et al.24 In that study it was concluded that 
the increase both in the self-energy and ion-ion repulsions should significantly 
diminish the concentration of ions in the groove region, relative to the 
expection based on Coulomb’s law alone. In contrast, at  low salt concentra- 
tions we find more ions in the groove due to the enhanced (relative to 
Coulombic) attractive phosphate potential. This effect dominates at  low salt 
concentrations (including physiological), but at  higher salt concentrations the 
phosphate attraction is effectively screened and it is at  this point that the 
self-energy terms diminish the concentration in the grooves as predicted by 
Troll et al.24 

In principle there is no numerical or mathematical reason to expect signifi- 
cant differences between the two studies since in both cases the potential is 
governed by Poisson’s equation. Possible sources of discrepancy are as follows: 
(a) In the present study charges are placed on atomic centers that are inside 
the van der Waals envelope while the electrodes are kept outside of the clay 
model in contact with the high dielectric medium (Although Troll et al. point 
out the possibility of excavating a cavity in their clay model, inserting an 
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electrode, then refilling the cavity with a low dielectric material); (b) We 
approximate the electrical potential a t  the boundaries of our grid with a 
superposition of Debye-Huckel potentials (or coulombic potentials a t  zero 
salt) whereas the grounding of the tank in the study of Troll et al.24 effectively 
clamps these potentials a t  zero. Both of these differences should reduce the 
phosphate potentials in the grooves as measured in the clay tank relative to 
those calculated in this study. 

The results summarized in Fig. 5 suggest that solvent screening of phos- 
phate-phosphate interactions is very effective, even for groups that are 
adjacent on a single strand. The effective dielectric constants that are ob- 
tained can provide a basis for incorporating a more realistic screening function 
in molecular mechanics simulations than those currently in use. For example, 
using an average value for c e  of 70 a t  physiological salt concentration, the 
function ( qiqj/70rij)exp( - Krij) should provide a reasonable approximation 
for the pairwise interactions of charges qi and q j  between phosphate groups. 
This function should not be valid for interactions between atoms on the bases, 
which will in general be less effectively screened by solvent. The magnitude of 
base-base interactions will be considered in a future publication. 
This screening function should be more appropriate for molecular mechan- 

ics simulations than those currently being used, since i t  includes the effect of 
dielectric screening and provides a means of including the effects of salt 
concentration explicitly. It is of interest to compare the screening predicted by 
the equation given in the previous paragraph to the reduction in phosphate- 
phosphate interactions predicted by a distant-dependent dielectric constant 
commonly used in simulations. For adjacent phosphates 7 A apart, the 
screening function suggested above predicts an interaction energy of 0.67 
kcal/mole at zero salt concentrations and 0.27 kcal/mole at  0.15M salt. The 
distant-dependent dielectric constant predicts an interaction energy of 6.8 
kcal/mole a t  zero ionic strength and 0.27 kcal/mole if each phosphate charge 
is reduced to 0.2 to account for salt effects. The agreement a t  0.15M is 
striking, but also highly fortuitous. It is due to the fact that the distance- 
dependent model underestimates dielectric screening by about an order of 
magnitude while the reduction of phosphate charges to -0.2 overestimates 
salt effects, also by an order of magnitude. I t  should be emphasized in this 
regard that the procedure of reducing the phosphate charge to account for salt 
effects is not supported by our results. 

The major anticipated application of the FDPB method to molecular 
mechanics simulations is based on the possibility it offers of incorporating 
solvent screening effects that are based on a well-defined physical model. The 
PB model itself is of c o r n  based on assumptions, but these are known, the 
errors they introduce can be estimated, and in some cases they are subject to 
improvement. In any case, the PB equation should constitute a major im- 
provement over the ad hoc assumptions currently being used. Moreover, the 
PB equation provides a means of accounting for changes in salt concentration 
and for changes in solvent screening as the conformation changes. For exam- 
ple, the screening constants calculated here would be expected to vary with 
the shape of the molecule and the effect can easily be studied with further 
calculations on other forms of DNA. Changes in screening would also be 
expected to occur during the course of a molecular mechanics simulation, and 
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while i t  is not known how large this effect is likely to be, current potential 
functions have no provision for dealing with the problem. However, FDPB 
calculations can a t  the very least reveal the magnitude of the effect and, 
moreover, it may be possible to devise a means of recalculating screening 
parameters during the course of a simulation. However, this lies beyond the 
scope of the present work. 

In summary, the results of this study have shown that the detailed shape of 
the DNA as well as the existence of a dielectric boundary have important 
effects on the magnitude of the electrostatic potentials around the macro- 
molecule. The approach that has been introduced should make it possible to 
make improved calculations of the magnitude of electrostatic interactions in 
different forms of DNA a t  different salt concentrations. Extensions of the 
FDPB method to include electrostatic charge-solvent interactions have been 
described for proteins43 and will also provide a means of incorporating 
solvation energies, including the effects of the ion atmosphere, in calculations 
of total conformational energies of DNA, as well as the binding energies of 
charged ligands. 

We are grateful t o  Drs. Hillary Rodman Gilson and Michael Gilson for helpful discussions on 
the nonlinear PB equation. We have also benefited greatly from discussions with Professor Peter 
Rossky on the validity of the PB equation. This work was supported by grants from the ONR 
(N00014-86-K-0483) and NIH (GM30518). 
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