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Synopsis

The Tanford-Kirkwood theory for evaluating the electrostatic free energy of a discrete charge
distribution in the presence of ion atmosphere is extended to concentric dielectric continua. The
theory is applied to study the conformational preferences with respect to phosphodiester torsion
angles in the' dimethylphosphate anion (DMP~) and the sodiumi dimethylphosphate ion pair
(Na*DMP"™), in the absénce and presence of ion atmosphere and at varying local dielectric
constants. Results indicate that phosphodiester torsion anglesin DMP~ prefer the gauche—gauche
conformation in aqueous solutions.

INTRODUCTION

The dielectric continuum as a description of environmental effects on the
equilibrium properties of aqueous solutions, and on the structure and confor-
mation of biomolecules, has received much attention over the last several
decades due to its conceptual simplicity and computational convenience.
Beveridge and Schnuelle, in an earlier publication,! described the evaluation of
Helmholtz free energy of polarization of an arbitrary charge distribution
imbedded in concentric dielectric continua, generalizing the models of Born®?
for ion solvation and of Onsager* for dipole solvation, within the framework
of Kirkwood’s reaction potential formalism. >¢ This can be useful for including
electrostriction or bound-water effects in a dielectric-continuum treatment of
solvent. In the following we present an extension of this treatment to incorpo-
rate ion atmosphere, thus combining the work on extended Debye—Huckel
theory discussed by Tanford” with that in Ref. 1 to provide an extended
continuum scheme to treat environmental effects. The theory is illustrated by
investigating the conformational preferences of the dimethylphosphate anion
and the sodium dimethylphosphate ion pair in aqueous solutions with respect
to phosphodiester torsion angles.

BACKGROUND

The continuum approach is motivated physically by a separation of spatial
scales involved in the problem. If the dimensions of the solute are much larger
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compared to solvent and counterions, the environment (i.e., solvent and
counterions) may be treated as a homogeneous medium. The continuum
formalism is characterized mathematically by an appropriate differential
equation for the potential of interest. For electrostatic potential, one starts
with the Laplace equation for treating solvent effects and the Poisson—
Boltzmann equation for considering the effects due to ion atmosphere. Usage
of the linearized Poisson-Boltzmann (P-B) equation for the ion atmosphere,
while involving an approximation discussed extensively in the literature,®
makes the problem analytically tractable.

v2® =0 (Laplace equation) (1)
(v2?—x2)® =0 (Linearized P-B equation) (2)

Here ® is the electrostatic potential and v ? is the Laplacian operator. The
ionic strength enters the theoretical treatment through x, the Debye recipro-
cal length parameter. The general solution for Eq. (1) in polar coordinates,”
suitable for the symmetry of the problem of solute in a spherical cavity
considered here, is

] +n E ”
0= T 5 (Bt + o Prcost)ens 3)
n=0m=—-n

and for Eq. (2) it is®

d = i E {fnm e"’”‘Xn(xr)]Pn”‘(cos6)8’:’““’ (4)

n+l
n=0m=-—-n

where P"(cos #) are the associated Legendre polynomials, B,,, and C,,, are
constants, E, . is related to the charge distribution and

n [ 2°n1(2n — s)! 5
Aatar) =il L!(zn)r(n —s)! }(”) (5)

s=0

The form of Egs. (3) and (4) is due to an expansion of the solutions of Egs. (1)
and (2) in terms of Legendre polynomials, which constitute a set of linearly
independent functions.

The problem as extended to concentric dielectric continua® considers three
regions with solvent treated as a polarizable dielectric continuum. Region A
with a dielectric constant of ¢, is the cavity of a radius a containing the solute
represented as a discrete charge distribution, region B vicinal to the solute
contains solvent of dielectric constant €, in a spherical shell of thickness
(b — a), and region C represents the bulk solvent of dielectric constant ¢, and
extends radially from b to infinity. Thus for the problem dealt with in Ref. 1,
the potential inside the cavity is

o0 +n E :
& =¢') Y |B,s"+F,,r"+ ——|PM(cosf)e™ (6)
n=0m=—-n r :
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where the 1/7"*! terms originate in the multipolar expansion of the central
charge distribution, with n denoting the order of the electrical moments. E,,,,
contains the characteristics of the central charge distribution:

s [(n ~ |m|)!

m —im¢
(n + |m])! ] o qrri P (cos 0 )e (7)

The terms B,,, and F,,, are due to the reaction field acting on the solute
charge distribution, originating in the polarization of the local dielectric shell
and the bulk dielectric continuum, respectively. The reaction potential acting
on the solute charge distribution is identifiable with

o0 +n
Dpmehy, ¥ B rmhF r* BN vic o (8)
n=0m=—n

The continuity of the potential and its first derivative across the boundaries
between the three regions were employed to specify the boundary conditions.
The coefficients B,,, and F,, were determined in terms of E,,. Helmholtz
free energy of polarization was obtained as

A= %Z%‘I’R("ﬁ) (9)
2

< b e VT E M B T
2—6,-,32_:0{[ (n+1)e,+n ]ag’”l
XRISE) R

(n+1)ey+n (n+ e, +n b2n+1} (10)

where
Q,= Z zqkqfrfr;‘Pn(cos 61) (11)
&
and
s (n+1)Q —¢,)1 —¢;) a’m*?
€, —ea/{l + [(n+1)e; + 7] b2n+1} (12)

This model was a step beyond the earlier continuum models for solvation
free energies in recognizing the special nature of solvent close to the surface of
the solute. A similar extension of Kirkwood and Tanford’s treatment is
presented below.

THEORY

The model considered in the present treatment consists of three regions as
in Ref. 1 (cf. Fig. 1) but could of course be generalized further. Region A
represents a cavity of radius r = a, and a dielectric constant of ¢; wherein the
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Region A

Solvent
Region B

Solvent and ion atmosphere
Region C

Fig. 1. Definition of the parameters for the concentric dielectric continuum problem.

solute charges g, are located at sites r,. Region B, extending from r = a to
r = b, represents the region of the solvent vicinal to the solute and contains
solvent of dielectric constant ¢,,.. Region C, ranging from r =56 to r = c©
contains both the counter and coions, i.e., the ion atmosphere and the solvent
of dielectric constant ¢,. This partitioning of the system, besides being
physically realistic for spherical solutes at low ionic strengths, provides a
unified scheme to combine the other models mentioned above. The objective
here is to consider analytically the solute-solvent interactions as well as
solute—ion atmosphere interactions at the continuum level. The appropriate
equations to solve are the Laplace equation [Eq. (1)] in regions A and B, and
the linearized Poisson-Boltzmann equation [Eq. (2)] for region C. The nota-
tion adopted in the following is as similar as possible to that of Ref. 1.

The potential inside the cavity is given by Eq. (6), where now the F,, terms
also include the reaction field due to the ion atmosphere. The reaction
potential at the solute charge site r;, is given by Eq. (8). The potential in the
local region (region B) is

[a]

G ;
= ephily Z (F rt+ n’:’"i )P,f‘(cos f)eim® (13)

n=0m=—n

The potential in the outermost region (region C) is

D, = €5’ f‘, [ n:tl "”Xn(xr)]an(cosﬂ)e"m" (14)

=) m=—n
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The boundary conditions for the model considered are
@, (r=>0)=®,(r=">)
d(r=a)=0,(r=a)
1ol AR 1oe/dr),_, = €(dDy/dr), _,
and
e(d®,/dr),_, = €,(d®/dr),_,

Equations (13)—(15) lead to

G C
EIM(F b" + nm) = eo'l{ == e_‘th(xb)}

bn+1 bn+1

Gnm
or Eb(anbn = bn+1 ) e Canb

where

€ = €0/ €L

and

¥r) ==X (xr)/r® = [Y(r)] e [dY(r)/dr] r=b

Equations (13), (14), and (17) lead to

G
nl b t=(nt 1) b’”z =C,Y,

Eliminating C,,, from Egs. (19) and (22),

b2n+1

7 (n+1)Y, +¢,bY} | G,
o G an = ibbYE:

Similarly, Egs. (6) ancL%)together with Eq. (16) give

€ Bnma"‘ 2 ana” + —a,"”—“” EIM Haoq” +

+1

Ko G
or ;o efiBea+ Kot + o =|F,,a"+ .

where
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and Egs. (6), %,)and (18) lead to

= 'Enm G
anma 1—(n+1)w=—(n+1}a :

Eliminating F,, using Eqs. (23) and (24) gives
Gnm = c;(Bnma2n+1 + Enm)

where

b2n+l

nY, — €,bY;

c;=ca/{1+

Combining Egs. (26) and (27) gives

e l(n AE 1)(1 5% E;)] Enm

mml (n+Del+n a2t

and from Egs. (27) and (29),

; n(l —¢,)
Gn,m =~ 1 R N e e e
(n+ e, +n

nm

and from Eqgs. (23) and (30),

e ](1 = )[(n +1)Y, + ¢,bY;

o (n+1)Y, + ¢,bYy ) n(l —e¢,)
ey nY, — €,bYy " (n+ e, +n

The reaction potential is

b2n+1

(26)

(27)

(28)

(29)

(30)

(31)

Pr=¢')Y X

o o {[(n+1)(1—c;) £ -+[(n+l)Yb+cbng]

nmbm=en ] (B4 Del 4 pcnt®

% [1 nl-¢) 1 rm

" (n+1)e, +n | B2

The electrostatic free energy is

A=— -
2¢. =5l (n+ L)e.+n |a®t? nY, — ¢, bYy
oaa e
(n+1)e, + n | b2"*!

1 © l(n+1)(1—¢;)] Q, +[(n+1)Yb+ebbe’
a

}EnmPn’"(CDS Pletm?

(32)

|

(33)
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The above results transform into those of Ref. 1, in particular, Eq. (33)
reduces to Eq. (10) in the limit of vanishing ionic strength. For x = 0,

Y. ='1,/b"" and ¥'= —(n+ 1)}#5° (34)
Essentially, the terms F,,, and €/, are redefined from those in Ref. 1 to include

ion atmosphere through the Debye’s reciprocal length parameter x.
For n = 0, Eq. (33) reduces to

(1—-e€;) Qo  1— ¢l +xb) Q
Ay= — S S 35
. 2£il ehnts 0 el +ab) b (35)
Substituting for €/, and setting €, = 1 results in
A P 5 i i 36
o= L Apa DH)_2££G( € T (36)

In comparing Eq. (36) with the Debye-Huckel result (see, for instance, Eqs.
(26)—(30) of Ref. 7) it must be borne in mind that the reference state here is
the discrete charge assembly in free space as in Born’s model for ion solvation.
By letting x = 0 and ¢; = 1 in the above equation, Born’s charging energy is

recovered,
Q(] 1_€a
Ay = — ;
: 2a( : ) @7)

Similarly, for n = 1, @, = u?, and

2(1 — ¢ 2Y, + €,bY; 1-—¢, :
Ay ( ) N o B tslle S ( ) _.'f3 (38)
2¢;| (22 + 1) a Y, — €,bY/ (2¢,+1) ) b

where
a’ 2Y L he Y/
€, =¢ /ll+5§( m) (39)
Y, = (e *t/b%)(1 + xb) (40)
Yy = (—e =t/b%)(2 + 2xb + x°b?) (41)
Now by setting ¢, = 1, ¢; = 1, and x = 0 in Eq. (38),
1-c¢ %
(1-e€,) p (42)

171+ 2,) @@

This is the familiar Onsager’s dipolar contribution to the solvation free
energy.
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CALCULATIONS

Model calculations are performed on dimethylphosphate anion (DMP )
and sodium dimethylphosphate ion pair (Na®"DMP ) in the gauche—gauche
(gg), gauche—trans (gt), and trans—trans (tt) conformations as systems of
previous interest in this laboratory.'®-'* Literature on the conformational
preferences of phosphodiester torsion angles, and on the hydration of DMP~
and Na*DMP-, is summarized in an earlier publication.'® Equation (33)
in the limiting case was seen to reproduce the hydration free energies of
monoatomic ions (Table 2.9 of Ref. 3), and here we consider a polyatomic
conformationally flexible molecular ion. All calculations were performed at a
temperature of 298 K and varied ionic strengths. Center of the first non-
vanishing moment is chosen as the origin for the solute. The inner radius
r = a was taken to be 3.2 A and the outer radius r = b as 6.0 A. These values
are based on the solute-water radial distribution functions calculated from
the previous Monte Carlo simulations.'” The inner radius as estimated from
the partial molar volumes was ~ 2.87 A, but was observed to lead to
divergences in the computed free energies since some solute charges lie outside
the inner sphere. The choice for the outer radius also agrees with the value of
b=a+ 2R, where R is the radius of the water molecule. The geometry
and charge distribution for DMP~ were identical to those of Alagona et al.,'®
where the charges were chosen as fits to the quantum mechanically calculated
electrostatic potentials and reproduce the moments of the electronic charge
distribution well. The sodium ion for the ion pair was placed in the anionic
POO ™ plane on the bisector of the OPO angle at a distance of 2.21 A from the
anionic oxygens, with a unit positive charge, following Liebmann et al.'® The
inner dielectric constant ¢; was taken to be 1. A choice close to 2 for the local
dielectric constant (€,.) used in conjunction with the values of outer radii
obtained from Monte Carlo simulations!” was observed to reproduce the
experimental free energies of hydration'® of alkali metal cations and halide
anions. Some of the estimated ¢, values are 1.58 for Na™, 1.72 for K7, 2.25
for C1-, 2.16 for Br—, and 1.82 for I~ (b is taken as a + 2R for Br~ and I7).
This prompted a choice of 2 for ¢, for the present study. A value of 4 for the
local dielectric constant has some precedence in the work of Kollman et al.'®
However, calculations were also performed with €, = 10, and 78.3.3 Different
concentrations were employed to study the effect of ionic strength on the
conformational preferences.

RESULTS AND DISCUSSION

Results on the hydration free energies of the anion (DMP ~) are collected in
Table I as a function of the number of terms considered in the multipole series
expansion in Eq. (33). Conformational trends are seen to converge much faster
than the absolute magnitudes. The calculations predict an ordering of gg > gt
> tt for the relative conformational preferences of phosphodiester torsions in
DMP "~ in aqueous solutions. Table II summarizes the influence of explicit
counterion and the effects of variations in local dielectric constant on the
conformational stabilities. The local dielectric constant provides an indirect
handle on the ionic strength in the vicinity of the solute. The conformational
differences are much smaller for the ion pair than for the anion, particularly
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TABLE I
Convergence of Hydration Free energies of DMP™*

n® gg gt i

1 —39.43 —39.43 —39.43

2 —39.43 —39.43 —39.43

3 —39.85 —39.93 —40.27

4 —40.28 —40.45 —40.52

5 —40.71 —40.77 —40.71
10 —42.00 —41.36 —41.00
20 —43.38 —41.66 —41.06
30 : —43.98 —41.70 —41.05
40 —44.24 —41.71 — 41,05

45 —-44.31 -41.71 —41.05

®Energies are in keal/mole; temperature 298 K; ionic strength = 0.0; a = 32 A, b =60 A,
€ = 1.0, €, = 2.0, and ¢, = 78.30.
P Number of terms considered in the multipole expansion.

for gg and gt conformations. A smaller value for the local dielectric constant
brings the conformations free energetically even closer. Indeed, for the ion
pair, if the dipolar contributions (n = 2 and ¢,,, = 2) alone are considered, the
hydration free energies (in kcal /mole) are —11.57 for gg, —13.40 for gt, and
—15.21 for t, suggesting a trend of # > gt > gg for the ion pair in concur-
rence with the studies of Bleha, Mlynek, and Tvaroska®® on HfDMP~ and
with our previous Monte Carlo studies.'” Changes in ionic strength in the
outer region on the hydration free energies as presented in Table IIT are seen
to have little or no influence on the conformational trends.

An attractive feature of the present model is its generality. It combines
solvent effects and ion atmosphere, and is particularly suited for incorporating
a vicinal solvent zone and changes in the ionic strength. The applicability of
the present model to biopolymers is to be judged in terms of the overall
symmetry of the charge distribution, specifically the shape parameter
[(Area'/?) /(Volume'/?)]. For other shapes, a similar extension of the spheroidal
model* is possible. Soumpasis® discussed the influence of ion atmosphere on
a periodic charge distribution with cylindrical symmetry and this has been

TABLE 11
Hydration Free Energies of DMP~ and Na® DMP ™ as a Function of Local Dielectric Constant®
€loe 88 gt 73
DMP~ 78.30 —-64.79 —57.32 —55.37
Na*DMP~ 78.30 —58.20 —55.97 —49.85
DMP- 10.00 —60.62 —b54.32 —52.68
Na*DMP~ 10.00 —50.87 —498.09 —44.03
DMP~ 4.00 - 54.07 —49.41 —48.21
Na*DMP~ 4.00 —39.99 —38.82 —356.25
DMP~ 2.00 —44.31 —41.71 —41.056
Na*DMP~ 2.00 —25.28 —24.85 —23.07

*Energies are in kecal /mole.
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TABLE IIT
Environmental Free Energies" of DMP ™ and Na* DMP~
c® gg at t
DMP~ 0.00 — 44,31 —41.71 - 41.05
Na*DMP~ 0.00 —25.28 —24.85 —23.07
DMP~ 0.01 — 44,37 —41.77 —41.11
Na*DMP~ 0.01 —25.29 —24.85 —23.07
DMP~ 0.10 —44.45 —41.85° —41.18
Na*DMP~ 0.10 —25.30 —24.86 —23.08
DMP~ 1.00 —44.55 —41.956 —41.28
Na'DMP~ 1.00 —25.33 —24.89 —23.12

*Energies are in keal /mole.
"Ionic strengths are reported as concentration C (in molarities) of 1:1 electrolyte.

extended® further to discrete charge distributions incorporating a vicinal
solvent zone. The size of the molecule needs to satisfy two mutually conflict-
ing criteria. The solute molecule must be big enough for the bulk environment,
and in particular, for the vicinal solvent to be treated as dielectric continua.
The charges in the interior of the cavity must not be too close to the
boundary, for the spherical symmetry of the potential assumed, and in
particular, because the multipolar expansion of the potential converges slowly
in this region.”® Studies on the applicability of the concentric dielectric
continuum to globular proteins are on hand.

Investigations on the conformational preferences of phosphodiester torsion
angles in dimethylphosphate anion indicate that gauche-gauche conforma-
tion is preferred in aqueous solutions. This is in accord with the experimen-
tally observed preponderance of the gg conformations for the diverse
phosphodiester torsions (Refs. 10, 14, and references therein). The conforma-
tional differences in the hydration free energies are smaller for the ion pair
relative to the anion as expected. Variations in the ionic strength in the outer
region are not energetically significant, probably due to the large distance (6
A) from the origin. Changes in the local dielectric constant have a pronounced
effect on the magnitudes of the hydration free energies but not on the relative
conformational preferences.
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