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Free Energy Calculations of Ion Hydration: An Analysis of the Born Model in Terms of 
Microscopic Simulations 
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The free energy perturbation technique is used in conjunction with Monte Carlo simulations to calculate the electrostatic 
contribution to the hydration free energy of a hypothetical cation whose charge varies in the range 0-3 au. The results are 
used to examine the validity of the continuum (Born) treatment of ion hydration. Saturation of the orientational polarizability 
of the water dipoles begins to become significant at values of the ionic charge of about +0.?5, a considerably higher value 
than predicted from a Langevin analysis. Moreover, due to the opposing effect of electrostriction on the dielectric response, 
the continuum prediction of a quadratic charge dependence of the hydration free energy is reproduced for values of the ionic 
charge up to approximately +1.1. These results suggest that dielectric saturation is insignificant for monovalent cations. 
Above charges of 1.1 the first solvation shell becomes fully saturated while the remaining water molecules continue to respond 
quadratically with increasing charge. It is argued that to within a few percent the assumptions of the Born model (without 
corrections for dielectric saturation) can be justified in terms of microscopic simulations. 

Introduction 
An accurate theoretical treatment of the solvation of simple 

ions in water has been difficult to obtain despite the apparent 
simplicity of the system involved. One source of the difficulty 
arises from limitations in the understanding of the energetics, 
structure, and dielectric behavior of water molecules close to the 
ion. Given such complications, it is remarkable that treatments 
based on the Born model,',2 which assumes that the solvent is a 
dielectric continuum, are  rather successful in reproducing the 
hydration enthalpies for a large number cations and anions of 
varying radii and ~ h a r g e . ~  The success of the Born model is 
particularly puzzling since the organization of water close to the 
ion, where ionsolvent interactions are the strongest, must be very 
different from that of bulk In this study, a relationship 
between a microscopic description of water and continuum models 
is established by examining the dependence of hydration free 
energy on ionic charge. Changes in water structure around the 
ion as revealed by Monte Carlo simulations are correlated with 
the Born model through the continuum concepts of dielectric 
saturation and electrostriction. 

The solvation free energy of an ion, AA, in the Born model, 
is a function of three variables, the charge of the ion q, the cavity 
radius a, and the dielectric constant t of the solvent: 

M = - q (  I - 1 / ~ ) / 2 a  (1) 

The expression is the sum of the electrostatic work done in dis- 
charging the ion in vacuum, and of charging the ion in a dielectric 
medium. ( I r ,  an  alternative and physically more meaningful 
formulation, eq 1 can be derived from the solvent reaction field 
induced by a point charge a t  the center of the ion.8) The only 
unknown in the Born formula is the radius, a, assigned to the ion. 

Ionic radii defined from crystal structures are too small and 
consistently overestimate hydration free energies,2 Le., predict free 
energies that are too negative compared to experiment. However 
Latimer et aL9 demonstrated some time ago that good agreement 
with experiment could be obtained for a number of ions if the radii 
used in the Born equation were chosen so as to account for the 
separation between the ion and the center of the water dipole. 
Hirata et a1.I0 have recently argued (see also below) that this 
correction successfully incorporates the asymmetry of the water 
molecule into the continuum model. An alternative rationale for 
using larger radii has been based on electron density profiles in 
crystals, which indicate that covalent radii for cations and ionic 
radii for anions provide a meaningful and consistent basis for 
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defining the cavity formed by an  ion.3 Calculated solvation en- 
thalpies based on these radii (increased uniformly by ?%) are in 
excellent agreement with experiment even for multivalent ions. 
Independent of the physical interpretation associated with the use 
of different radii, it is remarkable that the Born model with little 
or no parametrization is capable of fitting a substantial number 
of data points. 

Perhaps the greatest source of surprise is based on the fact that 
field strengths near an ion are on the order of IO6  V/cm, which 
leads to the expectation that dielectric saturation will occur in 
regions of the solvent close to the ion." The effect of dielectric 
saturation should be to lower the dielectric constant and hence 
to decrease calculated hydration energies. To account for the field 
dependence of the dielectric constant within the continuum scheme, 
the solvent around the ion has been treated either as concentric 
shells of different dielectric c o n ~ t a n t ' ~ . ' ~  or by varying the dielectric 
constant continually with distance from the ion based on a Lan- 
gevin function description of solvent However, 
the Langevin function neglects short-range correlations between 
solvent dipoles and is not appropriate for the description of the 
dielectric properties of associated solvents such as water.19x20 

In an attempt to go beyond simple Langevin treatments, Booth" 
extended the dielectric theories of Kirkwoodz1 and Frohlich2* and 
found significant dielectric saturation effects at fields comparable 
in magnitude to those found near ions. However, this result is 
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based on uncertain assumptions regarding water structure in the 
vicinity of ion.20 SchellmanZo suggested that dielectric saturation 
may not be as important as is usually assumed, in part because 
electrostriction tends to increase the dielectric constant of the 
solvent in the vicinity of the ion, opposing the effect due to di- 
electric saturation. These issues are explored in this work via 
Monte Carlo simulations and free energy perturbation methods. 
An explicit molecular treatment of the solvent molecules provides 
a direct approach to the elucidation of the roles of dielectric 
saturation and electrostriction in the thermodynamics of ion hy- 
dration. 

A considerable number of computer simulations of aqueous 
solutions of ions have been reported, many of which have focused 
on the structure of water around ions (see, for example, ref 4-7). 
Hydration enthalpies tend to be overestimated in such simulations, 
due in part to the neglect of three-body terms in the potential 
functions (see, e.g., ref 7) .  An effect of this neglect is the un- 
derestimation of water-water repulsions, primarily in the first shell 
of solvent molecules around the ion. 

I n  this paper we present the results of a Monte Carlo based 
free energy simulation of ion solvation. We have focused, in 
particular, on the charge dependence of the solvation free energy. 
The Born model predicts that solvation energies vary as the square 
of the charge and experimental solvation energies do indeed exhibit 
a quadratic charge dependen~e .~  For example, solvation energies 
of divalent and trivalent ions are approximately 4 and 9 times 
larger, respectively, than those of monovalent ions of similar radii. 
Our first goal has been to determine i f  simulations succeed in 
reproducing this quadratic charge dependence. Assuming that 
they do for the hypothetical cases of small charges (where satu- 
ration should not be a factor) our second goal has been to assess 
the effects of dielectric saturation for real ions. As discussed below, 
dielectric saturation is expected to produce a linear rather than 
quadratic dependence of hydration energy on charge, and this 
should be reflected in increasingly large deviations of any con- 
tinuum prediction from experimental values as the magnitude of 
the charge increases. That such deviations are not evident (see, 
e.g., ref 3) suggests that the effects of dielectric saturation are 
not severe. 

This suggestion is largely borne out by the results of this study. 
We find that for charges up to approximately +1, dielectric 
saturation is less of a problem than is generally believed, due in 
part, as anticipated by Schellman,20 to the effects of electro- 
striction. At larger values of the charge, saturation in the first 
shell does become a factor but one that produces relatively small 
percentage effects. Our results do not point directly to a particular 
radius that might be appropriate for use in the Born model. On 
the other hand, the simulations do suggest that continuum models 
of ion hydration can be justified in terms of molecular simulations 
and hence that attempts to fit experimental data with simple 
physical parameters are  not necessarily detached from 
“microscopic reality”. This issue is considered in the Discussion. 

Methods 
To determine the difference in hydration free energy for two 

solutes i and j via perturbation  simulation^,^^-^^ a coupling pa- 
rameter, A, is introduced into the potential function describing 
the solutewater interactions. The solutewater interaction energy 
for any value of the coupling parameter in the interval (0,1( is 
evaluated as 

Ex = AEj + (1 - X)Ej 
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with X = 0 referring to the solute i and A = 1 to the solute j .  A 
series of simulations are performed spanning successive ranges 
of A in the interval 0-1, with a predefined AX as the step size. 
In each simulation ensemble averages of exp[(E(X + Ax) - E- 
(X)\/kT] are formed with X as the reference state. The relative 
free energies in each simulation are computed from 
AAA(AX) = AA(X + AX) - U ( X )  = 

(-1 / k T )  In (exp[{E(X + AX) - E(X)I /kT] ) A  (3) 

where quantities enclosed by angular brackets refer to ensemble 
averages. The total free energy difference between states ( A  = 
0) and (X  = 1) is then 

AAl, = AA(A=l) - AA(X=O) = xAAA(AA) (4) 

The Monte Carlo simulation methodology used here is described 
elsewhere.29 A modified Metropolis procedure30 incorporating 
force bias3’ and preferential sampling3z was used. 

Monte Carlo computer simulations in the ( T ,  V,N) ensemble 
at  a temperature of 25 OC were performed to determine the free 
energy of hydration of an ion as a function of charge. The sim- 
ulation system consisted of one cation and 215 water molecules 
at  a density of 1 g /mL.  These were enclosed in a box of half- 
edge-length 9.5 A. The charge on the ion was varied from 0 to 
+3 au in 1 5  steps of 0.2 au. This charging procedure is the 
counterpart to the charging of an ion in a dielectric medium in 
the Born model. The midpoint of the charge range covered in 
each simulation is defined as the reference state. For instance, 
in a simulation varying the charge from 0 to 0.2 au, 0.1 au is 
defined as the reference state. Each simulation thus gives two 
values for relative free energies, Le., one for 0.0-0.1 au and one 
for 0.1-0.2 au in the above example. Simple cubic periodic 
boundary conditions were used to approximate the macroscopic 
system. Solute-solute interactions were not considered. Thus the 
system studied corresponds to the solute at  infinite dilution. 

Ion-water interactions were computed with the potential 
function of Jorgensen and co-workers’ under minimum image 
convention. The 6-1 2 parameters for the ion-water interactions 
were taken from ref 7 and correspond to those of a sodium ion 
in water. Water-water interactions were modeled by the TIP4P 
r e p r e ~ e n t a t i o n ~ ~  with a spherical cutoff of 7.75 A. The TIP4P 
model for water is reported to have a dielectric constant of about 
50.34 All ion-water interactions within a box were included. Thus, 
the cutoff for these interactions ranged from 9.5 8, for interactions 
along a line parallel to the edge of the box to 13.5 8, for inter- 
actions along the diagonal. The advantage of not using a spherical 
cutoff for ion-water interactions is that a larger number of terms 
are included if all waters in a box are allowed to interact with 
the ion. The disadvantage for the purposes of this study is that 
it is difficult to make a direct comparison to the Born model with 
a specific spherical cutoff radius. For the purposes of comparison, 
we have assumed that the effective cutoff radius in the simulations 
is 11  8, (the average of 9.5 and 13.5 A). That is, the simulation 
results are compared to the Born prediction for a sphere of bulk 
solvent extending out to 11 A. In addition we have used a Born 
“correction” that corresponds to the continuum contribution due 
to solvent molecules beyond a particular radius. For example, 
the results in Table I use a Born correction for ion-solvent in- 
teractions beyond 11 A. 

The initial configuration in each simulation was taken from 
a preequilibrated trial run on the ion-water system with appro- 
priate charge on the ion. Each simulation involved a total of -3 
X IO6 configurations. Convergence is followed by monitoring the 
relative free energy. Representative convergence profiles of the 
calculated free energies are shown in Figure 1. Also shown in 
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TABLE I: Calculated Relative Free Energies of Hydration 
(kcal/mol) 

simulation energy Born free energy simulation 
q q + A9 AAA f 20 AA with Born correction' energy 

0.0 
0. I 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 . 1  
I .2 
1.3 
I .4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

0. I 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1 . 1  
I . 2  
1.3 
1.4 
I .5 
1.6 
I .7 
1.8 
I .9 
2.0 
2. I 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 
3.0 

-1.8 f 1.0 -1.8 
-4.3 f 0.3 -6.1 
-6.4 f 0.5 -12.5 
-8.2 f 0.5 -20.6 

-11.2 f 0.4 -31.9 
-13.3 f 0.4 -45.2 
-15.2 f 0.8 -60.4 
-17.3 f 0.2 -77.7 
-20.1 f 0.2 -97.8 
-22.0 f 0.5 -120 -135 
-24.4 f 0.6 -144 
-25.2 f 0.4 -169 
-26.3 f 0.5 -196 
-27.1 f 0.5 -223 
-28.5 f 0.1 -251 
-29.5 f 0.4 -281 
-31.3 f 0.2 -312 
-32.5 f 0.7 -344 
-32.7 f 0.4 -377 
-33.6 f 0.6 -41 1 -47 1 
-35.5 f 0.3 -446 
-36.3 f 0.7 -483 
-37.6 f 0.7 -520 
-38.7 f 0.4 -559 
-39.7 f 0.3 -599 
-40.4 f 0.4 -639 
-41.3 f 0.2 -680 
-42.4 f 0.8 -723 
-43.2 f 0.1 -766 
-44.3 f 0.5 -810 -945 
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AA + Born correction for ion-water interactions beyond 1 1 8, 
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Figure 1. Convergence behavior of selected free energy simulations. 
Running mean free energy (solid line); successive block averages (dotted 
line). The charge ranges covered in the simulations are indicated on the 
figure. 

the figure are the block averages taken over 25 000 Monte Carlo 
steps. Ensemble averages of the computed quantities are formed 
over the last 2 X IO6  configurations of each run. The statistical 
uncertainties in the free energies are estimated by the method of 
batch means.3s As a further check on the convergence of the 
calculated free energies and on the absence of hysteresis, some 
of the above simulations were repeated in the opposite direction 
(Le., from h to h - Ax) with random starting configurations. The 
relative free energies computed in both cases converged to within 
i I kcal/mol. For charges above +2.5 au on the ion, the estimated 
relative free energies converged slowly even though the runs were 
extended to 4 X lo6 steps. Results are reported for relative free 

(35) Erpenbeck. J .  E.; Wood, W .  W .  Modern Theoretical Chemiszrv; 
Berne, B. J.. Ed.; Plenum, New Yotk, 1977; Vol. 6, Chapter 2 .  
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Figure 2. Calculated hydration free energies as a function of charge on 
the ion. Each point denoted by an asterisk refers to an individual free 
energy simulation. The solid line corresponds to the results of a Born 
model with a cavity radius of 1.68 8, truncated at  1 1  8,. 

energies from 0 to 3 au, but discussion of results is confined mainly 
to the charge range of 0 to +2 au. In addition seven mean energy 
simulations were carried out with ion charges of 0,0.25,0.5,0.75, 
1 .O, 1.5, and 2.0 au for structural analyses of the solvent. Cal- 
culations were carried out on either a Convex C1-XP computer 
or a Cray X-MP. 

Results 
The simulated relative free energies of hydration are shown in 

Table I along with statistical uncertainties a t  a 95% confidence 
limit. The solvation free energy given in Table I for a sodium 
ion is approximately -135 kcal/mol. This value is obtained from 
the calculated AA (-120 kcal/mol) with an added Born correction, 
defined above, which accounts for ionsolvent interactions beyond 
11 A. This is -1 5 kcal/mol for a monovalent ion, -60 kcal/mol 
for a divalent ion, and -135 kcal/mol for a trivalent ion. 

As a test of the consistency of the simulations, it is of interest 
to compare the -1 35 kcal/mol hydration free energy of Na+ given 
in Table I to the hydration enthalpy of -126 kcal/moi obtained 
by Jorgensen and co-workers' with the same potentials. Adding 
a Born correction of -22 kcal/mol to the latter value (based on 
the 7.5-A spherical cutoff used in ref 7) ,  an enthalpy of -148 
kcal/mol is obtained. The room-temperature entropic contribution 
to sodium hydration is about +8 k c a l / m ~ l , ~ ~  which, when sub- 
tracted from the hydration free energy reported in this work, 
predicts a hydration enthalpy of -143 kcal/mol. This value is 
in close agreement with the value of -148 kcal/mol we estimate 
from ref 7. 

The free energies in Table I data are  plotted in Figure 2 as a 
function of charge. The predictions of the Born model for a 
spherical shell extending out to 11  A and a cavity radius of 1.68 
%, are also plotted. This value for the cavity radius, which is used 
in ref 3, essentially reproduces the experimental hydration energy 
of Na'. The Born curve in Figure 2 displays the quadratic charge 
response of a hypothetical ion with a radius of Na+. i t  is evident 
from Figure 2 and from Table I that the simulations produce an 
approximately quadratic dependence of AA on charge for charges 
less than 1 au but that for larger values of q the behavior is no 
longer quadratic. A better description of the q dependence of &I 
can be obtained by plotting AAA/Aq (Le., the derivative of the 
hydration free energy) as a function of q as shown in Figure 3. 
The electrostatic component of AAA/Aq is the mean reaction 
potential due to the water a t  the ion and should be linear in q if 
the Born model is obeyed (solid line in Figure 3). In  contrast, 
the simulation plot has two linear portions, above and below an 
ion charge of +1.1 au.  As is evident from the figure and from 
the correlation coefficients given in the figure caption, the sim- 
ulations produce response curves that are linear to a remarkably 
high degree of precision. 
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Charge (au.) 
Figure 3. Calculated AAA/Aq as a function of charge on the ion. As- 
terisks and the solid line are the same as for Figure 2. Dashed lines are 
least-squares fits to the simulation results. The line for values of q less 
than 1.1 has a slope of -225 7 3, an intercept of 4 7 2, and a correlation 
coefficient, r ,  of 0.999. The line for values of q greater than 1.1 has a 
slope of -107 7 2, an intercept of -126 r 3, and an r value of 0.995. 
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Figure 4. (a) Coordination number of first-shell waters: 0, number of 
water molecules within a spherical shell of radius 3 8, around the ion; *, 
obtained from the integral of the first peak in the radial distribution 
function, g( r ) .  For the latter, the points for q = 0 and 0.25 are omitted 
due to the extremely broad first peak. (b) Distance to the first maximum 
(0) and minimum (*) in the ion-water (oxygen) radial distribution 
function. (c) Ensemble average of the radial orientation of water dipoles, 
(cos 6 )  in a spherical shell of 3 8, around the ion. 

We first note that for values of q less than 1.1 the simulations 
reproduce the continuum prediction of a quadratic dependence 
of solvation free energy (linear dependence of the reaction po- 
tential) on ionic charge. To identify the factors that produce the 
abrupt change in slope at 1 .1  au, a structural analysis of the water 
for several different values of q was undertaken. The results of 
this analysis for waters near the ion are shown in Figures 4 and 
5 .  Briefly, as the charge on the ion increases, two types of 
structural changes in the waters near the ion are observed. The 
first is increased electrostriction, defined here as the tendency of 
waters to crowd closer to the ion as the ionic charge is increased. 
The second is increased orientational polarization, defined by the 
increase in the tendency of waters to align in the ionic electric 
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Figure 5. Radial orientation of water molecules as a function of radial 
field. Points correspond to molecules selected at random from random 
snapshots during the mean energy simulations plotted against the 
strength of the radial field calculated from the instantaneous positions 
of the ion and all other water molecules, excluding the selected molecule: 
0, ensemble-average values for the first-shell waters only, charge value 
indicated on the plot; dashed line drawn through these points; solid line 
obtained from the Langevin function. 

field with increasing ionic charge. As illustrated Figures 4 and 
5 and discussed below, both electrostriction and orientational 
polarization increase with increasing charge for ionic charges below 
1 au. However, for ionic charges above 1 au, both effects plateau, 
leaving a completed first shell of six waters whose mean orientation 
is not affected by further increases in ionic charge. 

The data on electrostriction are presented in Figure 4a,b. The 
solid line in Figure 4a shows the number of waters within a 3-A 
shell of the ion (defined by the center-to-center distance from the 
ion to a water molecule) as a function of ionic charge. As the 
ionic charge increases from 0 to 1 au, the number of waters within 
3 A of the ion increases from 3.5 to 6. Beyond this charge there 
is no further increase. The same behavior is shown by the dashed 
line in Figure 4a, which represents the number of waters in the 
first shell of solvation defined by the integral of the first peak in 
the ion-water radial distribution function g(r ) .  Figure 4b shows 
the position of the first maximum and first minimum of g(r )  as 
a function of charge. These quantities,traditionally define the 
center (median) and outermost extent of the first shell of solvation. 
These data clearly show shrinkage of the first shell as the ionic 
charge is increased from 0 to 1 au but negligible shrinkage for 
higher charge values. The convergence of these two lines also 
indicates the sharpening of the first peak of g ( r ) .  

Figures 4c and 5 illustrate the tendency of waters to align in 
the electric field they see as the field is increased by increasing 
the ionic charge. In Figure 4c, this is shown by plotting the value 
of (cos 0 )  against ionic charge, where 0 is defined as the angle 
between the dipole of the water molecule and a radius vector drawn 
from the ion to the center of that water molecule. The radial vector 
points in the direction of the applied electric field of the ion. The 
value of (cos 0 )  increases from 0.22 at  zero charge (discussed 
below) to 0.82 at  a charge of 1 au. However, the orientational 
polarization as measured by (cos 0) clearly saturates, remaining 
essentially constant at  0.82 as the ionic charge is further increased. 
Since a value of 1 .O would indicate perfect alignment of the dipoles 
in the field of the ion, this might be expected to be the saturation 
value. The fact that perfect alignment is not achieved can be 
attributed to interactions with second-shell waters that place 
constraints, due both to hydrogen bonding and dipole-dipole 
interactions, on the orientation of the first-shell waters. 

Figure 5 contains a scatter plot of the radial orientation of water 
molecules selected at  random from random snapshots during the 
mean energy simulations. The data are plotted against the strength 
of the radial field at  the selected molecules calculated for that 
snapshot from the instantaneous positions of the ion and all other 
water molecules, excluding the selected molecule. This field thus 
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corresponds to the internal field acting on the water molecule in 
question. The ensemble average values of the orientation and 
radial field strength for solvent molecules in the first shell are also 
shown in Figure 5 and, again, clear saturation behavior is evident. 
(cos 0 )  begins to level off at an internal field value corresponding 
to a charge of about 0.75 au.  

For nonassociated polar liquids without atomic polarization, 
the dependence of (cos 0 )  on internal field strength can be derived 
analytically and is described by a Langevin function. This function 
corresponds to the solid line in Figure 5 .  The shape of the dashed 
curve in Figure 5 resembles that of the Langevin function although 
it is clear that in the simulations, saturation sets in at higher field 
strengths and, as discussed above, the dipoles never become fully 
aligned along the radial direction. Figure 5 clearly illustrates that 
saturation of the orientational polarizability of the water dipoles 
is significantly overestimated by the Langevin analysis. 

It appears curious that the plot of (cos 0 )  (Figure 4c) shows 
a residual alignment of water evident a t  zero ionic charge. This 
behavior is due primarily to statistical uncertainties when averaging 
over a small number of water molecules in the absence of an 
orienting force. In  fact, the value of (cos 0 )  a t  zero charge is 
probably much closer to zero. At larger values of the charge where 
there is a strong orienting field, we have confirmed that (cos 0 )  
reported i n  Figure 4 is a statistically “stable” value. 

Discussion 
The results presented in the previous section reveal a number 

of striking features of the response of TIP4P water to an increase 
in ionic charge. In agreement with the Born model, the derivative 
of the solvation free energy with respect to charge (dAA/dq) is 
linear in charge (corresponding to a quadratic response in the 
solvation energy); however in contrast to the continuum prediction, 
there are two distinct ranges of a linear response (above and below 
a charge of 1.1 au) each with a different slope. Further, a more 
detailed look a t  the structure of the energetically important 
first-shell waters reveals a far more complex molecular response 
to increase in ionic charge than is suggested by a simple continuum 
model. In  the Discussion we attempt to reconcile the continuum 
and microscopic descriptions of ion solvation. We first consider 
possible sources of error in the calculations and the impact they 
might have on the general conclusions that are reached. 

Errors in Simulations of ion Hydration. The principal sources 
of systematic error in the calculations are the absence of atomic 
polarization in the TIP4P water model, the use of cutoffs, and 
errors introduced by the periodic boundary conditions. The use 
of cutoffs, necessitated by the finite size of the simulation cell, 
will cause an underestimate of the solvation free energy since the 
interaction of the ion with water outside the cutoff radius, albeit 
weakly polarized, is neglected. In comparing to experiment, we 
have estimated the magnitude of the cutoff correction by assuming 
that water beyond the cutoff behaves as a bulk dielectric, i.e., 
according to the Born model. The magnitude of the relevant 
corrections are indicated in Table I and are discussed above. 

A second problem arising from the finite size of the simulation 
cell is that periodic boundary conditions are  applied a t  the cell 
boundary. This means that a water molecule at, say, the leftmost 
edge of the box, properly polarized to point toward the ion, will 
produce an image just outside of the rightmost edge of the box, 
improperly polarized to point away from the ion. Although the 
ion-water potential is truncated and hence the direct effect of this 
water will not be felt by the ion, the use of periodic boundary 
conditions will produce anticorrelated water dipoles a t  the walls 
of the simulation cell. Repulsive interactions between these dipoles 
will reduce the absolute magnitude of the calculated solvation 
energy. 

Undoubtedly the most severe source of error i n  the simulations 
is that the ion-water potential functions are fit to properly account 
for gas-phase binding energies but the water-water potentials are 
not adjusted correspondingly to incorporate the increased dipole 
moment of waters that are strongly polarized by the ion. The 
absence of these three-body effects is a well-known problem and 
is the reason that most simulations systematically overestimate 
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solvation energies. As discussed above, the calculations make an 
error of about 35 kcal/mol for the solvation energy of sodium. 
Since the effect of anticorrelated dipoles a t  the boundary is to 
decrease the solvation energy, the errors due to polarization alone 
are probably somewhat larger than 35 kcal/mol. The overesti- 
mation of the absolute values of solvation energy is a general 
property of all potential functions that do not account for po- 
larization. In  fact Straatsma and Berendsen28 have recently 
reported free energy simulations of ion solvation using the SPC 
water model in which deviations from calculated and experimental 
values for sodium are about 30 kcal/mol once the Born correction 
(for solvent interactions beyond a cutoff radius of 9 A) has been 
included. 

The underestimate of water-water repulsion, primarily in the 
first shell, leads to the prediction that the simulations are over- 
estimating the effects of dielectric saturation. This is because 
water-water interactions oppose the parallel alignment of dipoles; 
if this interaction is underestimated, the individual water dipoles 
will align more readily. Thus, the expectation is that saturation 
will set in above the value of q = 1.1 reported in this work. It 
should be pointed out in this regard that the sharp break observed 
in Figure 3 might be an artifact resulting from errors in the 
potential functions. However, the existence of a smooth transition 
between the two regions of linear dielectric response would not 
affect the basic conclusion that there are two distinct regions of 
linear response of the solvent molecules to increase in ionic charge. 

Finally, it should be pointed out that the Born model accounts 
only for the electrostatic contribution to solvation, Le., the 
Helmholtz free energy of solvent polarization, while the simulations 
account for both electrostatic and nonelectrostatic contributions 
to ion solvation. However, since the reference state of the sim- 
ulations is the neutral ion, the energy of cavity formation con- 
tributes to the calculated change in free energy only if it changes 
with ion charge. This effect is small when compared to the large 
electrostatic contributions to ion solvation and has thus been 
ignored in the analysis. 

Response o f t h e  First Shell. If dielectric saturation is intro- 
duced into the Born model, it has the effect of reducing the 
solvation free energies of ions relative to those anticipated by simple 
linear response theory. At the molecular level, a similar expec- 
tation arises: the principal dielectric response of a polar solvent 
to an increase in internal electric field is the energetically favorable 
orientation of the permanent dipoles in that field. If the dipoles 
are already fully oriented such that no further orientation can 
occur, the energetic response of the solvent is lowered relative to 
that expected without saturation. At the field strengths considered 
in this study, the effects of dielectric saturation are largely limited 
to the first shell. 

Electrostriction, defined in the Results as the crowding of waters 
nearer the ion as the ionic charge is increased, has an effect that 
is opposite to that of dielectric saturation. As the number of water 
molecules in the first shell increases, the local dipole density 
increases, resulting in a more favorable interaction per unit volume 
with the ion. Further, as the first shell shrinks, the distance 
between the ion and the first-shell water dipoles decreases, resulting 
in more favorable interactions for each dipole. Both of these effects 
would tend to increase the dielectric response of the first-shell 
waters relative to, say, the predictions of a model that did not 
account for the effects of electrostriction. 

Table I1 attempts to partition the dielectric response of the first 
shell into its individual contributions. (See Appendix A for a 
detailed definition of the terms that appear in the table). An 
estimate of the effect of shrinkage of the first shell can be made 
by calculating the change in potential at the ion due to the change 
in mean distance to the first-shell water dipoles (relative to the 
mean distance a t  zero charge) holding the number, N ,  of waters 
in the first shell fixed. The corresponding change in potential, 
A& is given in parentheses in the fifth row of Table 11. The 
additional effect of increasing the number of waters in the first 
shell can be estimated by increasing the number of dipole-charge 
interactions contributing to the total sum from their original values 
at zero ionic charge to their final values at any given ionic charge. 
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TABLE 11: Structural Parameters and the Effects of Electrostriction and Dielectric Saturation in the First Shell 
charge, au 

0 0.25 0.5 0.75 1 .o 1.5 2.0 
4"" 2.7 2.7 2.4 2.4 2.3 2.2 2.2 
N 3.5 4.4 5.3 5.8 6 6 6 
(cos 0)  0.26 0.26 0.46 0.74 0.82 0.82 0.82 
AAA/Aqb  0 -54 -1 12 -162 -220 -285 -336 
Ad',c nap -20 (0) -30 (-13) -59 (-24) -81 (-38) -94 (-52) -94 (-52) 
Ad'sald na na na -7 31 153 256 

a R,,, is the distance in angstroms from the ion to the first water peak, Nc is the number of waters in spherical shell of 3 A. bValues in kcal/(mol 
au) calculated from Table I .  'Gain in negative potential due to electrostriction. Values in  parentheses correspond to Ad,. See Appendix A for 
details. dLoss of negative potential due to dielectric saturation. eNot applicable. 

The two effects combine to give the total effect of electrostriction, 
A c $ ~ ~ .  Note that for a charge of 1 au, Ades accounts for nearly 
half of the total potential but that this fraction decreases con- 
siderably for larger values of q. 

An estimate of the potential difference, Adsat, due to the 
nonlinear response of (cos 8) with charge is made by comparing 
the calculated potentials to those predicted by a linear extrapo- 
lation of the potentials a t  low values of the electric field (see 
Appendix A). It is apparent that dielectric saturation has a smaller 
effect than electrostriction for values of q less than 1 au but that 
the relative contributions are reversed for larger values of q. While 
there is no way to completely separate the effects of saturation 
and electrostriction, the results do tend to confirm the conclusions 
drawn from Figures 4 and 5 that electrostriction is the major effect 
relative to simple linear response theory for q C 1 au, while 
dielectric saturation is the major effect for q > 1 au.  

These findings are in sharp contradiction to the common view 
that dielectric saturation significantly lowers the effective dielectric 
constant of waters in the first shell, even around monovalent ions. 
A number of papersI6-'* have reported dielectric constants that 
are  a function of distance from the ions and that approach the 
high-frequency value in the first shell. While Figures 4c and 5 
do indicate the onset of saturation as measured by (cos 8 )  at values 
of q above 0.75, it occurs a t  a field that is much larger than 
predicted by a Langevin function (see Figure 5 )  thus demon- 
strating that previous treatments have overestimated the effects 
of saturation. Moreover, Figures 2 and 3 demonstrate that the 
first shell continues to behave as if it has a high dielectric constant, 
a t  least with regard to the free energy changes induced by an 
increase in charge, even beyond the point (q  = 0.75) where the 
plot of (cos 8) has begun to level off. This is due to the fact that 
electrostriction continues to increase beyond this point (see Figures 
4 and 5).  

The results of the simulations thus strongly suggest that it is 
not appropriate to correct the Born model, a t  least for values of 
q less than 1 au, by lowering the effective dielectric constant in 
the vicinity of the ion. The effects of dielectric saturation on 
multivalent ions will be considered in the two following sections. 

Two Regions ofLinear Response. It is clear from the structural 
data we have presented that by a charge of 1 au, the first solvation 
shell of the ion is complete, with its librational dielectric degrees 
of freedom saturated a t  (cos 0)  = 0.8. Once the first shell has 
"exhausted" its ability to respond to an increase in field, it will 
exert a fixed potential a t  the position of the ion that will be 
independent of charge. Thus, the simplest interpretation of the 
two linear regions in Figure 3 is that the break corresponds to 
the value of q where the first solvation shell ceases to respond to 
increases in charge. This suggests a simple model for ion solvation 
for values of q above the break. The central ion appears to be 
surrounded by a fixed, frozen shell of six waters, with bulk water 
beyond the first shell. For such a model the water reaction 
potential, dAA/dq, is given by 

(5) 

where the first term gives the interaction of the N dipoles in 
the frozen shell with the ion, while the second term describes the 
response of all solvent molecules not in the first shell. R ,  is the 
distance from the center of a frozen water dipole to the ion, and 

aaA/aq = - N ~ ( C O S  o ) / R , ~  + cq 

C i s  a constant. With values of 0.82 for (cos e ) ,  N = 6, 2.18 D 
for F ,  t = 78.3 for the bulk water, and the average distance to 
the first shell water dipole center for R, of 2.75 A (Table 11), 
the first term gives -98 kcal/(mol au)  as a constant contribution 
to dAA/dq. Given the approximations involved (for example, 
treating the water as a point dipole), this value is in good 
agreement with the intercept of -126 A 3 kcal/(mol au) obtained 
by fitting the curve above q = 1 au to a straight line and ex- 
trapolating this line back to q = 0. 

The fact that the reaction potential of water beyond the first 
shell responds linearly with charge is not unexpected since even 
the first-shell waters respond linearly up to the break. If we assume 
that the Born model is valid for waters beyond the first shell, the 
constant in eq 5 should be given by 

C = 332(1 - l / 8 0 ) ( l / r c -  1 / 1 1 )  (6) 

where rc is the effective radius of the cavity formed by ion and 
the first-shell waters and the 1/11 term again results from the 
use of 11 A as an effective cutoff radius for ion-water interactions 
in the simulations. There is no obvious prescription for choosing 
a value for rc, but the -3.0-A distance to the first minimum in 
g(r) a t  q = 1 au provides a physically meaningful definition for 
the radius of the cavity formed by the first shell. This yields a 
slope of C = -80, which is in reasonable agreement with the slope 
of -107 kcal/(mol au) obtained for the line above q = 1 . I  in Figure 
3. 

Modified Born Model with Dielectric Saturation. Due to the 
errors in the calculations discussed below, the numerical values 
of the free energies obtained in this work (and indeed in all 
simulations reported to date) are by no means accurate. Nev- 
ertheless, they do point to a simple physical model in which 
dielectric saturation in the first shell occurs fairly abruptly a t  some 
value of the ionic charge that is greater than 1 au and to solvent 
molecules beyond the first shell responding as a dielectric con- 
tinuum. It should be emphasized that this picture is different than 
one that assumes that the first solvation layer is saturated for all 
values of the charge. The latter will necessarily underestimate 
the contribution of the first shell to the total solvation energy since 
it makes no allowance for the fact that for values of q less than 
some critical value q*,  which we find to be greater than 1, the 
effective dielectric constant is close to that of the bulk value. 

It will prove useful in the discussion below to introduce a 
modified Born model that describes the qualitative behavior ob- 
served in Figure 3. If the Born model (eq I )  is extended to 
incorporate a shell of solvent, extending from the ionic cavity radius 
a to a radius b, which initially has a dielectric constant equal to 
the bulk, t ,  and which saturates abruptly at a charge of q* to yield 
a dielectric constant e l ,  then the solvation energy of the ion is given 
by (see Appendix B) 

AA = q*2( l / t  - 1 ) / 2 ~  < q* (7a) 

AA = 4*2(l/C - 1) /2a  + 
q*(q - q * ) ( l / a  - l / b ) ( l / t  - 1) + (4 - q*)2(l /a  - l / b )  X 

4 > q* (7b) ( l / t l  - 1 ) / 2  + (q2  - q * 2 ) ( l / c  - 1) /2b  

The first term in eq 7b accounts for the Born-like response of 
the entire solvent to the charging process for charges less than 
q*. The second term arises from the interaction of the inner solvent 
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shell reaction potential produced for q from 0 to 4* (where it 
exhibits the bulk dielectric behavior) with the charge above q*.  
The third term arises from the additional reaction potential of 
the saturated inner shell interacting with charge above 4*. The 
fourth term describes the response of the solvent in the outer shell 
for charge greater than q*. Note that the second term shows that 
even when the inner shell is "frozen" it still exerts a large q-in- 
dependent field on the ion whose magnitude depends on the size 
of 9* and on the bulk dielectric constant. Thus this contribution 
to the interaction energy increases linearly with 4 even after 
saturation. 

To estimate the effects of dielectric saturation on the predictions 
of the Born model, it is of interest to compare the predictions of 
eq 7 to those of eq I .  If we use a value of a 1.68 A, which produces 
a solvation energy of Na' of about 99 kcal/mol (close to the 
experimental value), eq 1 would predict solvation energies for ions 
of the same radius of 396 and 891 kcal/mol for a divalent and 
trivalent cation, respectively. Deviations from these values ob- 
tained from eq 7 reflect the predicted effects of dielectric satu- 
ration. Assuming from the simulations that b = 3 A and 4* = 
1 .  I au (as in Figure 3), it is still necessary to assign a value for 
the dielectric constant, t , ,  for the saturated shell of water. With 
a value o f t ,  = 2 (which assumes that the only remaining dielectric 
response results from electronic polarizability) eq 7 predicts a 
solvation energy of 378 kcal/mol for the hypothetical divalent ion 
(5% deviation from eq 1) and 810 kcal/mol for the hypothetical 
trivalent ion (9% deviation from eq I ) .  These deviations would 
be about halved if  the value of the high-frequency dielectric 
constant was about 4, as suggested by I f  it were further 
assumed that due to the errors in the water-water potentials, 
dielectric saturation sets in at a value of 4* = 1.5 rather than 1.1,  
the deviations would be reduced by approximately another factor 
of 2. 

The major conclusion from this simple numerical exercise is 
that the effect of dielectric saturation for multivalent ions is 
significant in terms of absolute energies but that the percent 
correction to the simple Born model is remarkably small. This 
would appear to explain, a t  least in part, why the Born model 
without accounting for saturation is capable of reproducing, within 
a few percent, the solvation energies of a large number of ions. 
The other reason is that even after the first shell has been satu- 
rated, it still exerts a large constant field on the ion. The first-shell 
ion-solvent interaction energy continues to increase linearly with 
4 but with a large proportionality coefficient that is given by the 
magnitude of this field. Thus, the response in this region although 
no longer quadratic is still large. These results suggest that 
previous attempts to improve the Born model by incorporating 
saturation effects have significantly overestimated their impor- 
tance. Equation 7 offers a possible route for improvement that 
is physically more reasonable, but, in our view, the magnitude of 
the corrections are not large enough to justify the use of an 
equation that lacks the elegant simplicity of the Born model and 
that contains additional parameters. 

We thus conclude that the Born model, despite its shortcomings, 
is difficult to improve within a continuum treatment of the solvent. 
Given the inherent shortcomings of the model and the uncertainties 
in the choice of radii, the relative effect of dielectric saturation 
is not large enough to justify an explicit treatment. 

Why the Born Model Works. For the Born model given in eq 
1 to have any relationship to physical reality, a number of criteria 
have to be satisfied. First, for small values of q the solvation energy 
must increase quadratically with charge as predicted by a con- 
tinuum model. This appears to be a general property of ions in 
dipolar solvents3' and has been found to be the case in the sim- 
ulations reported in this work. It has also been found3' that in 
dipolar solvents the solvation free energy is approximately one-half 
the solute-solvent portion of the solvation energy. This result 
follows directly from continuum theory since for any linear di- 
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electric the organization energy of the solvent is exactly one-half 
the solute-solvent interaction energy. I t  thus appears that even 
models that account for solvent structure reproduce the essential 
continuum behavior. 

The second criterion for the success of eq 4 is that a single 
dielectric constant can be used to characterize the solvent. We 
have shown in this work that dielectric saturation is a relatively 
minor factor (at least in percent terms) for ions below a charge 
of 3, which leads to the prediction that it is reasonable to use the 
bulk dielectric constant for most ions (this may not be the case 
for small radii and large charges such as in the case of Be?+ where 
dielectric saturation may well be an important factor). 

The final requirement is that it be possible to find an internally 
consistent set of radii that can be used in eq I ;  that is, the Born 
model would be meaningless if the radius for each ion was used 
as a free parameter. Latimer, Pitzer, and Slansky9 (LPS) obtained 
good agreement with experiment for monovalent ions by extending 
the crystallographic radii of cations by 0.85 and 0.1 A for anions. 
Rashin and Honig3 ( R H )  demonstrated that the covalent radii 
of cations and the ionic radii of anions (with a uniform 7% cor- 
rection) also reproduced experimental data. Both models have 
some physical rationale. The adjusted LPS radius is a measure 
of the distance from the ion to the center of the water dipole, while 
the R H  radii are related to size of the cavity formed by the ion, 
as defined by a region in space lacking solvent electron density. 
Thus, both models incorporate some information about the 
asymmetry of the water molecule, a point that has been empha- 
sized recently by Hirata et a1.I0 based on a study of ion solvation 
using the extended RISM integral equation theory. 

i t  appears then that the underlying assumptions of the Born 
model can be justified in terms of microscopic simulations. Further 
simulations on ions of different radii and different charge may 
ultimately provide a clearer basis for the choice of radii that 
reproduce experimental quantities. On the other hand, it should 
be recalled that simulations using currently available potential 
functions make rather large errors in absolute solvation energies. 
In the meantime the Born model, though by no means exact, 
provides, with remarkable simplicity, an estimate of solvation 
enthalpies and free energies that are accurate to within a few 
percent. Recent extensions of the continuum model to the cal- 
culation of the solvation energies of nonspherical ions have yielded 
results of comparable accuracy.' 
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Appendix A: Equations Used To Estimate the Effects of 
Electrostriction and Dielectric Saturation in the First Solvent 
Shell 

The main contribution to the reaction potential, A$,., comes 
from the dipole field of the first-shell waters. At any particular 
value of the ion charge, 4, the potential from the first-shell waters 
is approximated by 

$f = ~ ~ ~ ( ~ 0 s  8 ) , / R q 2  ( A I )  

where N is the number of dipoles, p is the dipole moment, (cos 
8) is the mean radial orientation of the dipoles, and R is the mean 
distance of the dipoles from the ion. The subscript 4 refers to 
the mean values observed in the simulations a t  that value of 4. 
For a given value of 4, the gain i n  the reaction potential due to 
electrostriction can be partitioned into effects due to changes in 
R, and to changes in N .  The former, A&, is given by 

(A2) 

where R, is the mean dipole distance at a charge of 0. The total 
change in potential due to electrostriction, A&, accounts for the 
charge dependence of the number of dipoles in the first shell as 
well  and is given by 

A$r = Np(c0s e),( I /Ro2 - 1 /R,2)  

(36) Hill. N.; Vaughan. W.; Price, A.; Davis M. Didectric Properties and 

( 3 7 )  Yu. H . - A . ;  Karplus, M. J .  Chem. Phys. 1988. 89, 2366. 
Molecular Eehaoior; Van Nostrand Reinhold: London, 1969; p 272.  
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A& = ~ ( ~ 0 s  0),(No/Ro2 - Nq/R:) ('43) 

where No is the number of dipoles in the first shell a t  a charge 
of 0. 

The loss in reaction potential due to dielectric saturation, defined 
here as the nonlinear response of (cos 0 )  a t  high fields, is given 
by 

= N~P( (COS 8 e ) q -  (COS e)q)/RqZ (A41 

where (cos Oe)q  is the expected value of the mean dipole orientation 
at charge q. We define the expected value of the dipole orientation 
by noting from the dashed line in Figure 7 that for first-shell 
waters, (cos 0 )  varies/linearly with the magnitude of the radial 
field in the range q = 0.25 to q = 0.75. (cos Oe), is then obtained 
by assuming that a t  the approximate midpoint of this range ( q  
= 0.5) the response is linear and then carrying out a linear ex- 
trapolation of the field to higher values q. The mean radial field 
experienced by the dipoles varies as 1 /R: .  Thus 

(COS B e )  = ( ~ / O . ~ ) ( R O ~ ~ / R , Z ) ( C O S  8)05 (A51 

Appendix B Derivation of the Two-Shell Dielectric Model for 
a Spherical Ion 

Consider a spherical ion of radius a and charge q surrounded 
by solvent. The solvent is considered to consist of two spherical 
shells, the first extending from the surface of the ion to a radius 
b, the second extending. from b to infinity. The outer shell of 
solvent is assumed to behave with a constant dielectric o f t ,  while 
the inner shell has a dielectric of t, up to a charge of q*, and then 
abruptly saturates with a dielectric constant of e l .  We  require 
expressions for the electrostatic solvation energy, or the energy 
of transferring this ion from vacuum to the solvent, and for the 
reaction potential experienced by the ion. To obtain these ex- 
pressions, it is convenient to assume that the charge of the ion 
is distributed uniformly over its surface, with density u = q/(4raZ).  

We start by writing the general solution to the Poisson equation 
for spherically symmetric systems for each of the two shells, 
assuming a constant dielectric of t l  for the inner shell, to obtain 
the potential, 4 ( r ) ,  where r is the radial coordinate, origin at  the 
center of the ion: 

inner shell: $ 1  = A , / t , r  + BI (B!) 

outer shell: d2 = A 2 / t r  + B2 (B2) 

where the integration constants A, ,  A2, B,, and B2 are determined 
from the boundary conditions 

4i(b) = 42(b) (B3) 

c14fl(b) = f45(b)  (B4) 

4 2 ( m )  = 0 (B5) 

4 ' l ( U )  = -4?TU/tl (B6) 

The prime indicates the derivative with respect to r .  Equations 
BI-B6 give 
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41 = q / v  + q ( l / t  - ! /c , ) /b  (B7) 

42 = q / t r  (B8) 

(B9) 

The potential a t  the ion is 

d(a) = q/eia + q ( l / €  - l / t i ) / b  

&(a) = q / a  

and the reaction potential due to the solvent at  the ion, A&, is 

Ad, = q/tia + q ( l / t  - l / c , ) / b  - q / a  (B11) 

The potential at  the ion in a vacuum is 

or 

A$, = q ( l / a -  l /b ) ( ! / t i  - 1) + q ( l / t -  !) /b 

j 
where the first and second terms of (B12) are the contributions 
to the reaction potential from the inner and outer dielectric shells, 
respectively. Now we must account for the fact that the dielectric 
of the first shell is not constant but has a value t for q < q* and 
t I  for q > q*. The change in reaction potential with charge is 

( l / a  - l / b ) ( l / t  - 1) + ( l / t  - l ) / b  for q < q* (B13) 

for q > q* (B14) 

aA4,/aq = 

( ! / a  - l / b ) ( l l t l  - 1) + ( l / t  - ! ) /b  

Integrating to obtain the reaction potential a t  any q 

A4x(q) = Jh a&/as (B15) 

A& = q ( l / t  - l ) / a  for q I q* (B16) 

A& = A4x(4*) + (4 - 4*)  a A 4 , ( 4 ) / a s  for 4 > q* 

= q * ( ! / t  - l ) / a  + 
( q - q * ) { ( l / a -  l / b ) ( l / t i  - 1) + ( l / ~ -  1)/bJ (B17) 

Combining terms of (B!7) in the constant factor, q*, gives 

A& = qKl /q  - l / b ) ( l / t l  - 1) + ( l / t  - !)/bl (slope) + 
q*{( l / a  - ! /b ) ( l / c  - l / t l ) )  (intercept) (B18) 

The solvation energy is given by 

AA = S A @ ,  dq dq = [0 ...q] 

Substituting for A@, with eq B!6-B17, integrating, and rear- 
ranging yield 

A A =  
q*2(1/t - 1 ) / 2 ~  + q*(q - q * ) ( l / a  - l / b ) ( l / t  - 1) + (4  - 

q*)2 ( l / a  - ! /b ) ( l / t I  - !)/2 + (q2 - q*2) ( l / t  - 1) /2b  
(B20) 

If the substitution q* = q is made in eq B17 and B20, the familiar 
Born model is recovered (eq 1 and 5a of the text), while if  e l  = 
2, q* = 0, the model of Beveridge and Schnuelle12 is obtained. 


