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A Simple Method To Estimate Free Energy from a Molecular Slmulaildn:

Renormalization on the Unit Interval
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A theory to estimate the free energies of aqueous solutions expeditiously from a single conventional molecular simulation
is proposed. Free energies are expressed as a function of the average internal energy and minimum energy by transforming
the problem to the unit interval and evaluating much of the expression analytically. The theory is illustrated by applications
to liquid water models and ionic solutes in water. The free energies of liquid water models (TIP4P, MCY-CI, and SPC/E)
are in excellent accord with the results from other methods (average error is less than 3%). The free energies of ions (Li™,
Na*, and CI') in water are reasonably good (average error is less than 20%), considering the approximation involved. Applications
to aqueous solutions of NaDNA in the presence of a simple salt indicate that the magnitude of the calculated free energies
are consistent both qualitatively and quantitatively with polyelectrolyte theory for counterion condensation.

Introduction

There is considerable current research interest in the numerical
calculation of the free energy of chemical and biomolecular
systems via molecular simulation.! Various methods such as
thermodynamic integration, perturbation method, and potential
of mean force calculations have been applied to this problem, all
of which to date involve a series of simulations, each of which are
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individually costly and time consuming. There is a critical need
for a theoretically robust and computationally efficient algorithm
for free energies in which the result can be obtained much more
rapidly. We explore herein the possibility of obtaining accurate
estimates of free energy from a single conventional simulation.

The essence of the proposed procedure is a renormalization to
the unit interval, whereby the configurational energy is trans-

(1) Beveridge, D. L.; DiCapua, F. M. Arn. Rev. Biophys. Biophys. Chem.
1989, /8, 431,
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Free Energy Estimate from Molecular Simulation

formed by using an auxiliary parameter £ to the interval 0 < §
= 1. Here we discovered that a number of terms in the free-energy
expression can be evaluated analytically, at what corresponds to
be the limit of infinity in numerical sampling. What remains is
a simple expression for free energy in terms of quantities routinely
obtained from a single simulation.

Test cases for this procedure are the systems of liquid water,
hydrated alkali metal cations, halide anions, and methane and
aqueous solutions of a model of B-DNA in the presence of excess
salt. Preliminary results demonstrate sufficient correlation with
experiment and with other existing methods to generate confidence
in the viability of the procedure.

Theory
The Helmholtz free energy A4 of a system is given'™ as
A = kT In (E/kT) (1)

where £ = E(XN) is the total interaction energy of the system
in configuration X;M, k is the Boltzmann constant, T is the tem-
perature of the system, and angular brackets ( ) denote an en-
semble average. The quantity 4 in the ensuing discussion refers
to the excess Helmholtz free energy with ideal gas as the reference
state.

Let E, = E,, — E, represent the energy range spanned by
the system with E_,, and E;, standing for the maximum and
minimum energies attained by the system. Note that E,,, is not
a well-defined quantity in the context of a molecular simulation
since it may depend on the run length. Thus, the true E, per se
cannot be evaluated reliably from a simulation. Nevertheless, let
the energies E be expressed in dimensionless units through a
variable £ as

§=(E~- Enn)/E; (2)

It follows from eq 2 that 0 < £ < 1. With these definitions, the
total configurational energy of the system can be expressed as

E= Ernin + Erg (3)
Equation 1 may now be rewritten as
A = Epin + kT In (eE4/kT) 4)

We have thus far carried out only simple algebraic manipulations
and eq 1 is not different from eq 4 except for certain definitions.
Both eqs 1 and 4 give identical results if a mean energy simulation
history of configurational energies is used for the direct evaluation
of free energies, but these results are generally inaccurate due to
an inadequate sampling of the configuration space, particularly
the high-energy regions.

The problem as stated in eq 4, however, can be approached in
the following manner: replace the ensemble (Boltzmann) averages
in eq 4 of a uniformly distributed variable E# with ensemble
averages corresponding to a uniform distribution (symbolized
below as ( ),) of a Boltzmann distributed variable E *£*.

(eE-EJ'kT) e (eEr‘f')’kT)u
This implies that ef"¢"/kT carries information on both the width
and the shape of the energy distribution. Once this is done, the

averages corresponding to a uniform distribution can be calculated
as a simple integral over the whole unit interval; viz.,

1
£hTYy = (pEMEVKTY = e kT
(EBHAT). = (BIENT) m (BT g, i1 (5)

1 eEN kT _ 1
%/ kT dt* = —m,——
.I; £ ¢ E*/kT ©)
The free energy from eq 4 and 6 can then be estimated as
A= E ot EY kT In (E*/ET) (7)

(2) Mezei, M; Beveridge, D. L. Free Energy Simulations. In Computer
Simulations and Biomolecular Systems; Beveridge, D. L., Jorgenson, W. L.,
Eds.; Annals of New York Academy of Sciences, 494; New York Academy
of Sciences: New York, 1986,

(3) Valleau, J. P.; Torrie, G. M. Modern Theoretical Chemistry; Berne,
B. J., Ed.; Plenum: New York, 1977; Vol. 6, Chapter 5.
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Additional clarification of eq 5 and 6 is given in Appendix A. The
connection with Gibbs’ formulation of canonical ensemble is
outlined in Appendix B. The method proposed here to obtain eq
5 is analogous to the scheme of Metropolis et al.* and is
straightforward once the configurations are generated according
to the Boltzmann distribution. Conceptually the steps taken so
far have a simple interpretation: A transition from eq 1 to eq 7
is merely tantamount to a transformation of the problem of the
determination of the excess free energy A4 to the problem of
estimation of E*, a function of the energy distribution.

We now focus on the evaluation of E.*. A multiplication of
both sides of eq 3 by e¢ results in

Eet = E et + E te (8)

Define now the following transform:
1
Xetd
i
1

_'[; et di

(X) = )

Application of this transform to both sides of eq 8§ leads to
(Eet), = (Epne™ + Efet),

= Eu(et) + E(te®), (10)
Solving for E, from eq 10 gives
E g t JEmiu 2
r=(e>_ {e7%), ()
(&), (ke7¥),

We now wish to express {Ee™®),in eq 11 in terms of the average
internal energy of the system (E) as determined from the sim-
ulations. The strategy is to relate {(Ee™), to Boltzmann averages
of the energy and replace E, by E,*. Let

(Ee®), = (E)A(E,D) (12)

where f (Sf(E.£)) is as yet unknown. f'is a distribution function.
We hypothesize that fis a normal distribution function.® Spe-
cifically fis assumed to be the probability of a normally distributed
random variable, a function of energy, taking a value between
—w and (£e%), in the limit of infinite numerical realization. Then

EY s G /2 ds (13)

(Eet), 1 f (&),

or
(Ee®), = (E)N({tef)y) (14)

where W (x) denotes the normal distribution given in eq 13.
Equation 11 may now be rewritten as

o2 (E)N((tet)) F Epin{e ),
(tet), {Ee'f)‘

The coefficients for (E) and E;, in eq 15 are amenable to
analytical treatment. The transforms (), and {£et), can be
evaluated as

(15)

T

(eh), =(e+ 1)/(2e) = 0.6839 (16)
(Eef), = (e — 3)/(de(e — 1)) = 0.2349 (17)
and
N({Ee®)) = 0.5929 (18)
From eqs 15-18, we have
E* = 2.5241(E) - 29115E,. (19)

This E.* is substituted in eq 6 to obtain free energies as
A = Eqpin + kT In [{E*/5T — 1} /(E*/kT)] (20)

(4) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M, N,; Teller, A. H.;
Teller, E. J. Chem. Phys. 1953, 21, 1087.

(5) Feller, W. An Introduction to Probability Theory and its Applications,
John Wiley & Sons: New York, 1968; Vol. 1.
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TABLE I: Calculated Transfer Free Energies of Hydration (kcal/mol)

Jayaram and Beveridge

system (E) Eoin AAh AA(expt) AA(PM,TI) AA(D)*
[H,0)ripep -2180.39 £ 1.30 -2274.32 -5.37 £ 0.02 -5.74 -53b-54° -93
[Li*]q -2329.76 + 2.51 -2402.91 ~158.0/ £ 7.6 —122.1%8 -289.9
[Nat*l,q -2293.86 + 2.91 -2378.38 -114.3 £ 8.5 98,248 ~135.04/ -242.0
[CI],q -2257.77 + 3.14 ~2344.89 -87.7 £ 9.0 ~77.0¢¢ -79.3+/ -194.8
[CHaJa -2190.96 + 4.12 -2291.48 0.7+ 11.3 2.06¢ 2.27%8 ~118.1

“Free energies from direct evaluation using kT In (e%/*T). !Reference 13. “Reference 14. ?Reference 15. ¢Reference 16. /With Born correction.
EGibbs free energies. " AA for liquid water refers to free energy with ideal gas as the reference state. AA for solutes in water refers to free energy

of transfer from vacuum to water.

This expression can be further simplified. From eq 20, if /4T
> 1 (and it generally is > 10'%in a typical molecular simulation),
then

MU [ BT

and

E*
A= Enn+ E* - kT | (1)

Substituting for £.* from eq 19 in eq 21 leads to

A= 25241(E) - 19115E,,;, -
KT In {(2.5241(E) - 2.9115E ) /kT} (22)

or

A= (E) = [CiEpin— C{E) + kT In {((C;, + 1){E) -
(Cl st ])Emin){’kn] (23)

with C; = 1.9115 and C, = 1.5241. The principal result of this
work is contained in eq 23.

The new feature here is that closed-form solutions to the excess
free energies for aqueous solutions are obtained as a function of
the mechanical properties of the system via an expression obtained
from transforms (X), to the unit interval. Both the average
internal energy (E) and the minimum energy £;, can be com-
puted easily from any Metropolis Monte Carlo or molecular
dynamics simulation and their statistical uncertainties specified.5’
Given a knowledge of (E) and E;, from the equilibrated phase
of the system at a given temperature, the total free energy of the
system can be estimated from eq 23 with little or no extra com-
putational effort.

Numerical calculations are required to ascertain the accuracy
of these estimates, as described in the following section.

Calculations

lllustrative free-energy calculations are performed on the TIP4P
model of liquid water® and on the theoretical models of a few
monovalent ions? and methane!® in water. For this study, new
Metropolis Monte Carlo* computer simulations are carried out
on (1) liquid water, (2) [Na*],q, (3) [Li*],q, (4) [CI],q, and (5)
[CH,],q at a temperature of 298 K and a density of 1 g/mL. All
of these systems have been the subject of previous Monte Carlo
simulations from this group,”!!"'2 and citations to the background
literature for each case are contained therein. The system in each

(6) Erpenbeck, J. E.; Wood, W. W. In Modern Thearetical Chemistry;
Berne, B. J, Ed; Plenum: New York, 1977; Vol. 6, Chapter 2.

(7) Beveridge, D. L.; Mezei, M.; Mehrotra, P. K.; Marchese, F. T.; Ra-
vishanker, G.; Vasu, T. R.; Swaminathan, S. In Molecular Based Study of
Fluids; Haile, J. M., Mansoori, G. A., Eds.; Advances in Chemistry Series
204; American Chemical Society: Washington, DC, 1983; pp 297-351.

(8) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W;
Klein, M. L. J. Chem. Phys. 1983, 79, 926.

(9) Chandrasekhar, J.; Spellmeyer, D. C.; Jorgensen, W. L. J. Am. Chem.
Soc. 1984, 106, 903.

1((1)0) Jorgensen, W. L.; Gao, J.; Ravimohan, C. J. Phys. Chem. 1985, 89,
3470.

(11) Mezei, M.; Beveridge, D. L. J. Chem. Phys. 1981, 74, 6902.

(12) Swaminathan, S.; Harrison, S. W.; Beveridge, D. L. J. Am. Chem.
Soc. 1978, 100, 3705.

case consisted of 216 particles. Periodic boundary conditions are
imposed on the system. Solvent—solvent and solute—solvent in-
teractions are truncated with a spherical cutoff of 7.75 A.
Spherical cutoff for ions allows an easy application of Born
correction. In each case, 5 million configurations were generated
starting with a preequilibrated system, with the acceptance ratio
maintained around ~0.5. Ensemble averages of the internal
energies ((E) = U) were formed over the last 4 million config-
urations. The minimum energy E,;, attained by the system during
the course of the run was recorded. In the case of liquid water,
the runs were extended to 20 million configurations to provide
a better reference point and also to check the efficacy of a direct
evaluation of free energies from eq 1 with very long run lengths.
These calculations were performed on CRAY Y-MP with a
turnover rate of 1 million configurations per 25 min.

Results

The average internal energy of the whole system, the minimum
energy, and the free energy (in kcal/mol) calculated by using eq
23 are collected for each system in Table I in columns 2-4,
respectively. Also, in columns 5 and 6 the experimental free
energies and those determined by other methods are listed where
available.!?"16

The results for TIP4P water were found to be extremely sat-
isfactory. In addition to the regular sources of error in the es-
timation of internal energy such as the quality of the potential
functions, periodic boundary conditions, pairwise additivity in
intermolecular interaction energies, and truncation of intermo-
lecular interaction potentials, a likely source of error in free
energies estimated via eq 23 is in the determination of minimum
energies. Even if the error on E, were 50 kcal /mol, an unlikely
proposition, the error in the free energies would be less than 10%
for liquid water. This is highly encouraging.

It is interesting to estimate the free energy of the MCY-CI
model'” of liquid water with this theory. Equation 23 in its
simplest form reads as 4 = 2.5(E) — 1.9E,;,. The average internal
energy of MCY water is reported as —1868 kcal for a 216-particle
system at a temperature of 298 K and a density of 1 g/mL."®* If
we assume E;, to be lower than the average internal energy by
about 94 keal (i.e., E;, ~ —1962 kcal), based on the results of
TIP4P water from Table I, the total free energy is estimated as
{2.5(-1868) — 1.9(-1962)} —942.2 kcal for a 216-particle system,
which is (-942.2/216) —4.36 kcal/mol. The reported value for
the free energy of MCY water from thermodynamic integration
is —4.31 kcal/mol.!” While such a coincidence is fortuitous, even
if the assumed E,;, of —~1962 above differs by 80 kcal from the
actual E_;, in a MCY liquid water simulation, the estimated free
energies would differ only by 20%. A similar treatment of SPC/E
water?® ((E) = -2137 kcal® for 216 waters; E_;,, ~ -2231 kcal

(13) Hermans, J.; Pathiaseril, A.; Anderson, A. J. Am. Chem. Soc. 1988,
110, 5982.

(14) Jorgensen, W. L ; Blake, I. F.; Buckner, J. K. Chem. Phys. 1989, [29,
193,

(15) Jayaram, B.; Fine, R.; Sharp, K.; Honig, B. J. Phys. Chem. 1989, 93,
4320.

(16) Rosseinsky, D. R. Chem. Rep. 1965, 65, 467.

(17) Matsuoka, O.; Clementi, E.; Yoshimine, M. J. Chem. Phys. 1976, 64,
1351.

(18) Mehrotra, P. K.; Mezei, M.; Beveridge, D. L. J. Chem. Phys. 1983,
78, 3156.

(19) Mezei, M.; Swaminathan, S.; Beveridge, D. L. J. Am. Chem. Soc
1978, 100, 3255.
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TABLE II: Calculated Energetics of Hydration (keal) of
Methylamine, Methanol, and Ethane in TIP4P Water at 25 °C

Results of Perturbation Method Calculations?

(2) AAA CH;NH, — CH;0H 1.95
(3) AAA CH,;0H — C,H; 6.9
(4) stability trend CH;NH, > CH,0H > C,H;¢

{(E)® Ena® AA

(5) CH;NH; -2175.00 £ 3.73  -2240.20 -57.37 £ 10.34

(6) CH;OH -2176.90 £ 3.63 -2251.63 -39.95 % 10.16
(7) C;Hg -2147.06 + 5.6 =2222.0 -21.26 £ 14.77
Results with the Present Method
(8) AAA CH,NH, — C,H; 36.11 + 18.03
(9) AAA CH,;NH,; — CH,0H 17.42 + 14.50
(10) AAA CH,0H — C,H, 18.69 + 17.93

stability trend  CH;NH, > CH;OH > C,H;

2Reference 22.

(-2137 - 94 as for TIP4P water); and 4 ~ {2.5(-2137) -
1.9(-2231)}/216 = -1103.6/216 = -5.1 kcal/mol) gives 5.1
kcal/mol for the Helmholtz free energy compared to —5.5
keal/mol'? reported earlier in the literature. These, in our opinion,
demonstrate the utility of the present theory.

The direct evaluation of the excess free energy of liquid water
using eq 1 was attempted previously.?! The free energies obtained
from eq 1 on the diverse systems studied here are shown in the
last column in Table I. Nonconvergence of the results obtained
from eq 1° is evident from the data. In this sense, the present
methodology (eq 23) may be seen as an improvement over the
direct evaluation (eq 1) of free energies.

The solute hydration free energies (given in Table I in kcal/mol)
are calculated as follows:

AA([Xag) = A([XD215w) — Arisw = A([X]21sw) + 1155.2572
(24)

The transfer free energy of a solute according to the above equation
is the difference between the total free energy of the system with
and without the solute. The free energy of a 215-particle TIP4P
waler system is —1155.2572 kcal (-1160.6305 X 215/216) from
row 1 and columns 2 and 3 of Table I. The Born correction for
monovalent ions with a spherical cutoff of 7.75 A equals ~ —21.42
keal, and this has been added to the free energies of ions given
in column 4. The transfer free energies of ions are in reasonable
accord with estimates from other sources, and the average error
incurred is less than 20% when compared with experiment. Thus,
the method proposed here can be used for ionic systems with some
measure of confidence. For methane, the error in absolute num-
bers is small although the percentage error is large. This is
unavoidable if the absolute free energies are small, since the free
energies then are estimated as small differences between large
numbers as suggested by eqs 23 and 24. Other more elaborate
methods such as the perturbation technique may have an edge
over this method here in such an eventuality.

As a cautionary note, we would like to emphasize that for
accurate estimates of AAG® or AAA® when the free-energy dif-
ferences are small, the present method is not a substitute to the
perturbation method or other existing free-energy methodologies.
The hydration free-energy differences between methylamine,
methanol, and ethane in TIP4P water were determined in our
laboratory?? via the perturbation method (PM) by forming a
three-legged thermodynamic cycle. The calculated free-energy
differences are shown in rows 1-3 of Table II. The error on the
thermodynamic cycle is £0.38 kcal, which is satisfactory. The
stability trend obtained was CH;NH, > CH,OH > C,H;. The
average internal energy ((E)) and the minimum energy (E,;,)
for the hydration of these three solutes in TIP4P water were also
determined (with an 8.5-A water—water cutoff and 1.5 million

(20) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem.
1987, 91, 6269.

(21) Sarsikov, G. N.; Dashevsky, V. G.; Molenkov, G. G. Mol. Phys. 1974,
27,1249,

(22) Subramanian, P.; Beveridge, D. L. Unpublished results.
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TABLE III: Calculated Total Excess Free Energies (keal) for
Aqueous Solutions of NaDNA at Different Na*Cl~ Added Salt
Concentrations

concn, mM (E) Enin A
0 =192k P90 74 10838 3,35
25 =199: 50 a5 =1 e5300.06 ~ =1063y=E 3.81
50 =206.97 2 dss=-ci 2180 107 7ad 2,63
100 -221.38 £ 1.07 -234.74 -112.99 & 2.70
150 -235.84 £ 1.05 -245.32 -129.04 £ 2.65

MC steps as run length) during the course of this study.?> These
are given in rows 5-7 of Table II. Using these two quantities,
(E) and Eg;,, and utilizing the present theory (eq 23 and 24
above), we have been able to estimate the absolute free energies
of hydration (last colum in rows 5-7) and hydration free-energy
differences between these three solutes (recorded in rows 8-10
of Table II). The free-energy estimates in rows 5-7 deserve two
comments. These are based on (E) and E;,, which are obtained
with different run characteristics, a larger water—water cutoff,
and shorter run lengths than for TIP4P water and other systems
reported in Table I. Thus, a strict determination of absolute free
energies is not feasible using eq 24. In principle, the TIP4P
number in eq 24 is to be redetermined with a larger cutoff. This,
however, is not a cause for concern in estimating the free-energy
differences. Also, shorter run lengths starting with a random
configuration in general tend to give a less negative E;,, which
results (from eq 23) in a more negative free energy as seen in rows
5-7. Nonetheless, the stability trend for hydration in TIP4P water
indicated by these numbers in rows 8-10 is CH;NH, > CH,OH
> C;Hg, in qualitative agreement with the PM results. Several
points emerge from the results in Table II. Firstly, £, and hence
the absolute free energies estimated via the present theory are
sensitive to run characteristics. Secondly, the estimated AAA4®
values do not agree quantitatively in these three cases with the
results of the perturbation method calculations. The free-energy
differences in the perturbation method were evaluated via ensemble
averages of the differences in solute binding energies, which were
small and over several small perturbation steps. In the present
method, the free-energy differences are obtained by first calcu-
lating the absolute free energies of hydration and then taking the
differences. The error bounds thus as expected are large in the
latter. This notwithstanding, there is a qualitative agreement
between the results emerging from these two methods, which is
interesting considering that no extra simulations are required in
obtaining the stability trend with the present theory. Lastly, the
free energies of hydration are not scaled either as average internal
energies or minimum energies. For example, methanol hydration
is seen (from rows 5-7, Table II) to be favored over methylamine
with either {E) or E_;, alone, but free energies of hydration are
seen to favor methylamine from PM calculations. This is captured
by the present theory.

Application to DNA. We have recently reported [7,V,NV]
ensemble Monte Carlo computer simulations on [NaDNA],, at
a temperature of 300 K in the presence of added simple salt.?
The DNA concentration was fixed at 3 mM. The added salt
(Na*CI") concentrations were at (a) 0, (b) 25, (c) 50, (d) 100,
and (e) 150 mM. Different variations on the primitive model for
the solvent were investigated in this work. In the following, an
application of the free-energy methodology is outlined for the
simple Coulombic model, in which electrostatic interactions were
treated according to Coulomb’s law with a dielectric constant of
80 for solvent water. Results on the energetics are summarized
in Table III.

Excess free energies per ion of NaDNA in aqueous solutions
are shown in Figure 1 as a function of the number of ions in the
system. The results indicate that it is easier free energetically
to remove/displace small ions from the NaDNA system at higher
ionic strengths than at low salt concentrations, a qualitatively
reasonable result.

(23) Jayaram, B.; Swaminathan, S.; Beveridge, D. L.; Sharp, K.; Honig,
B. Macromaolecules 1990, 23, 3156.



7292 The Journal of Physical Chemistry, Vol. 94, No. 18, 1990

0.0

z -1

o i

& 16

[

w

=

w

ﬁ '2.4~j

& ]

@ i

i

W a2

Q i

w p

4.0 T B
24 48 72 96 120
NUMBER OF IONS
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of NaDNA in the presence of added salt shown as a function of In «, the
logarithm of the inverse Debye length.

A quantitative test for the free energies of NaDNA in aqueous
solutions containing added salt is necessary to justify the extension
of the present free-energy methodology to DNA in aqueous so-
lutions. Manning’s limiting law (eq 17 of ref 24), for polyelec-
trolyte solutions (A%*/N kT) = —£y In k, is tested on colligative
properties of polyelectrolyte solutions and melting temperatures
of DNA,? and its validity is established at low salt concentrations.
It follows from this limiting law that a plot of A/ N kT versus
—In « gives a straight line with a slope of £y at low added salt
concentrations. Note that the Debye length here includes all ionic
species in the system. According to the counterion condensation
theory,2 £y, has a value of 4.2 for B-DNA under vacuum and
counterions condense to reduce £y to unity upon transfer to
aqueous medium.242¢  Thus, the slope in the above plot, £y, must
equal 1. The calculated free energies per phosphate in units of
kT are shown in Figure 2 as a function of the logarithm of the
inverse Debye length. The slope of the straight line (best fit)
passing through the points on the graph representing added salt
concentrations from 0 to 100 mM is estimated to be 1.1 + 0.1.
This suggests that the free-energy estimates are quantitatively
of the correct magnitude.

Discussion

In this article, we describe a formalism to evaluate the free
energies of aqueous solutions expeditiously. This approach is
ideally suited for the estimation of free energies associated with
a local minimum. In the absence of a rigorous justification for
eqs 6 and 14, we make no pretense to having solved the problem
of configurational partition function for aqueous solutions.

(24) Manning, G. S. J. Chem. Phys. 1969, 51, 924.

(25) Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry, Part III, The
behavior of biological macromolecules; W. H. Freeman and Company: San
Francisco, 1980; Chapter 22.

(26) Manning, G. S. Q. Rev. Biophys. 1978, 11, 179.
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Equation 6 yields results that are derivable from Gibbs’ formu-
lation of the theory of canonical ensembles under the condition
that the energies of the system are densely distributed closely
around the most probable energy of the system (Appendix B).
Equation 14 at this stage is a hypothesis motivated by the need
to minimize the information to be used from finite length simu-
lations. It is a closure relation cast in the language of the central
limit theorem.® Further analysis, as desired by referees, of the
results of this theory vis-d-vis simulation is presented in Appendix
G

The minimum energy is a well-defined quantity theoretically,
but a problem is anticipated in its realization in practice. It is
identified here in our Monte Carlo simulations with the minimum
most energy attained by the system (in the postequilibration phase)
during the realization of a set of configurations consistent with
the Boltzmann distribution at a specified temperature. It is
sensitive to characteristics such as the run length and the ac-
ceptance ratio in the simulation. As a consequence, the errors
are large, particularly when the absolute free energies are small
as in the case of methane hydration. The problem is similar to
that encountered in the determination of the average internal
energies of transfer.’



Free Energy Estimate from Molecular Simulation

The free energy here is expressed as 4 = U — TS, where the
entropy S = k In W, with W given by
e (G, + 1)(E) - (C; + DE,,;,

T e WCHE)-CrE i) /KT (25)

Thus, the present theory may be viewed as using the probability
distribution given by eq 25 to obtain the free energies. This
distribution function appears to take into account both harmonic
and diffusive modes.

The free energy of TIP4P water is in excellent accord with the
results from other methods. The free energies of ions in water
are satisfactory considering the problems particularly with ion—
water potential functions. There is scope for improvement for
hydrophobic solutes or when the magnitude of the absolute free
energies is small and for accurate estimates of small free-energy
differences (AAG®). An empirical parametrization of the free
energies in terms of the average internal energy and the minimum
energy for a given family of solutes is feasible. Alternative energy
distribution functions in the lines of eq 25 can also be considered.

Conclusions

In this article, we have described a new approach to the esti-
mation of free energies of aqueous solutions from a single mean
energy simulation. We have demonstrated that a distribution
function (eq 25) based on the average internal energy and the
minimum energy can be used with success and without extra
computational effort to obtain free-energy estimates (eq 23) of
aqueous solutions. The type of problems that can be approached
with this methodology, the limitations, and ways to improve upon
the free-energy estimates are discussed. The theory proposed
performs extremely well on liquid water models (average error
< 3%). Application to aqueous solutions of ions yields satisfactory
results (average error < 20%). Preliminary results on DNA-small
ion systems are consistent both qualitatively and quantitatively
with polyelectrolyte theories for counterion condensation.
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Appendix A

If energies are preweighted with Boltzmann probabilities, they
contribute to the ensemble averages with a probability of one

= ] & *
(E) = N2E, (A1)

where N is the length of the Markov chain or N is the number
of configurations. (The superscript * denotes the fact that the
energies correspond to the Boltzmann distribution.) Similarly,

(eBATY = J]\_{ﬁes;-;kr (A2)

The same arguments apply to E. £, the transformed variable of
energy:

N
(eEA/KTy = ;l’VE-eE"a‘!H (A3)

By repiacing the summation in eq A3 with the integral in eq
5, we have accomplished two factors. Firstly, the integral above
admits a closed-form solution to the desired averages. Secondly,
we are supplementing the history of a finite length simulation with
information corresponding to infinite length numerical realization

(27) Gibbs, J. W. Elementary Principles in Statistical Mechanics; Ox Bow
Press: Hartford, CT, 1981.
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by evaluating the integral over the whole unit interval.
A moment expansion of the free energies,! expressed ineq 1,
gives

E)? =+E?)
- gfs).

1 (B “(EXEY) (B
(kT)Z( E e et ) (A4)

This is based on expanding the exponential and the logarithm in
eq 1. A similar expansion of the left- and right-hand sides of eq
6 shows that converting E,£ to E *£* makes the infinite sum-
mations analytically tractable and that all moments are included
in calculating the free energies with eq 6.

Summarizing the discussion of egs 5 and 6 briefly, E, is not
determined by the system. It may be anywhere in the interval
[-e,+=]. E.fis a uniformly distributed random variable. The
system dependence enters in forming the Boltzmann averages of
eBIKT, E* characterizes the system. E,*£* is Boltzmann dis-
tributed. The average formation, (e5't*kT) _is system inde-
pendent.

Appendix B
Connection with Gibbs’s formulation?” of the canonical en-
semble gives

E,
feE,!kT o EIKT q XN J‘E _""eE,fkr EIRT o8 4F

(eb‘,fk?') - -
fe‘af”dXN j;, ™ BT o g

i

where ¢ is the density of states. d¢/dE = 1/kT,” if the derivative
is evaluated at the most probable energy. On integration, ¢ =
(Epax — Enin) /KT = E,/kT. Substituting this in the above equation
gives

F BT

(eEIKTy = Eue i
E s ~E/KT oE /KT : -E/kT

-J;E...-,. € j; e £

gEman‘ kT

On carrying out the integration in the denominator, one obtains
(eE/RTy = Bt EMKT[(E /ET) / (eEWkT - 1))
The free energy then is given as

A= KT In (eE/T) =
Emin e Er — kT In {(e.é',ﬂt?"... 1)/(Er/kT)]

On expanding the exponential in the square brackets up to the
first termin E,/kT, A ~ E;, + E,. Note that this is very similar
to eqs 7 and 21 above. Usage in eq 21 of E,* given by eq 15
presumably corrects for the approximations introduced in deriving
the above equation.

Appendix C

In simulations on the systems examined here, all energy-related
quantities are seen to tend to a normal distribution. The results
on TIP4P water are shown in Figure 3 as an illustrative case. The
distribution of the total configurational energy of the system is
shown in Figure 3A. The distribution for the solute binding
energies, defined as the interaction of a single water molecule
(solute) with the rest of the system, is shown in Figure 3B. (Also
see ref 7 for a detailed description of these quantities.) The
distribution for the energy transform ((Ee*),/(E)) is shown in
Figure 3C. On the basis of these results, a normal distribution
approximation in eq 14 appears to be reasonable.

Improvements to this theory may be introduced via coefficients
C and C,in eq 23 or eq 25. Alternative functional forms for the
probability distribution in eq 25 may also be explored.



