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Genomes to Hits:
The Emerging Assembly Line in Silico
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The Dream @ SCFBIo

From Genome to Drug : Establishing the Central Dogma of Modern Drug Discovery

ChemGenome

Bhageerath

XIUTVH0 DOVTVGTD

Primary Sequence Tertiary Structure

Genome Protein

Develop In Silico Suggestions of Personalized Medicine
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BN oS A Case Study
‘http://www.scfbio-iitd.res.in/publication/ CHAPTER-3-B%20Jayaram-LATEST.p 7
Hepatitis B virus (HBV) is a major blood-borne pathogen worldwide. Despite the
availability of an efficacious vaccine, chronic HBV infection remains a major
challenge with over 350 million carriers.

No. HBV ORF Protein Function
1 ORF P Viral polymerase DNA polymerase, Reverse transcriptase
and RNase H activity!36.48],
2 ORF S HBV surface proteins | Envelope proteins: three in-frame start
(HBsAg, pre-S1 and | codons code for the small, middle and
pre-S2) the large surface proteins(36:4950]. The

pre-S proteins are associated with virus
attachment to the hepatocytelll

3 ORF C Core protein and [ HBcAg: forms the capsid [36l.

HBeAg HBeAg: soluble protein and its biological
function are still not understood.
However, strong epidemiological
associations with HBV replication®? and
risk for hepatocellular carcinoma are
known[42],

4 ORF X HBx protein Transactivator; required to establish
infection in vivol53.54, Associated with
multiple steps leading to
hepatocarcinogenesis!*s.
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United States FDA approved agents for anti-HBV therapy

Agent Mechanism of action / class of drugs
Interferon alpha Immune-mediated clearance
Peginterferon

alpha2a Immune-mediated clearance
Lamivudine Nucleoside analogue
Adefovir dipivoxil Nucleoside analogue
Tenofovir Nucleoside analogue
Entecavir Nucleoside analogue
Telbivudine Nucleoside analogue

Resistance to nucleoside analogues have been reported in over 65% of patients on
long-term treatment. It would be particularly interesting to target proteins other
than the viral polymerase.

Wanted: New targets and new drugs
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Input the HBV Genome sequence to ChemGenome 3.0:

Hepatitis B virus, complete genome
NCBI Reference Sequence: NC _003977.1
>gi|21326584|ref]NC_003977.1| Hepatitis B virus, complete genome

ChemGenome 3.0 output
Five protein coding regions identified

Gene 2 (BP: 1814 to 2452) predicted by the ChemGenome 3.0
software encodes for the HBV precore/ core protein (Gene Id:
944568)



k >oi|77680741|refl[YP_355335.1| precore/core protein
"7 [Hepatitis B virus]

MQLFPLCLIISCSCPTVQASKLCLGWLWGMDIDPYKE
FGASVELLSFLPSDFFPSIRDLLDTASALYREALESPEH
CSPHHTALRQAILCWGELMNLATWVGSNLEDPASREL
VVSYVNVNMGLKIRQLLWFHISCLTFGRETVLEYLVS
FGVWIRTPPAYRPPNAPILSTLPETTVVRRRGRSPRRR
TPSPRRRRSQSPRRRRSQSRESQC

Input Amino acid sequence to Bhageerath
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Input Protein Structure to Active site identifier of Sanjeevini
(AADS)
10 potential binding sites identified
A quick scan against a million compound library
Sanjeevini (RASPD) calculation with an average cut off
binding affinity to limit the number of candidates.

RASPD output
2057 molecules were selected with good binding energy from
one million molecule database corresponding to the top 5
predicted binding sites.



Out of the 2057 molecules, top 40 molecules are given as input to Sanjeevini
(ParDOCK) for atomic level binding energy calculations. Out of this 40, (with a
cut off of -7.5 kcal/mol), 24 molecules are seen to bind well to precore/core

protein target. These molecules could be tested in the Laboratory.

Molecule 1D Binding Energy (kcal/mol)
0001398
0004693
0007684
0007795
0008386
0520933
0587461
0027252
0036686
0051126
0104311
0258280
0000645
0001322
0001895
0002386
0003092
0001084
0002131
0540853
1043386
0088278
0043629
0097895




24 hit molecules for precore/core protein target of HBV are
suggested by the “Genome to Hit” assembly line
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From Genome to Hits

X Teraflops
Chemgenome

Genome Bha_geerat_h
Sanjeevini

Hits
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www.sctbio-iitd.res.in

*Genome Analysis - ChemGenome
A novel ab initio Physico-chemical model for whole
genome analysis

*Protein Structure Prediction — Bhageerath
A de novo energy based protein structure prediction
software

*Drug Design — Sanjeevini
A comprehensive target directed lead molecule design
protocol




Arabidopsis Thaliana
(Thale Cress)

Gene Prediction Accuracies

Software Method Sensitivity* | Specificity®
GeneMark.hmm
http://www.ebi.ac.uk/genemark/ Sth-order Markov model 0.82 0.77
GenScan ]
http://genes.mit.edu/GENSCAN.html Semi Markov Model 0.63 0.70
MZEF Quadratic Discriminant 0.48 0.49
http://rulai.cshl.org/tools/genefinder/ Analysis . .
FGENF .
http://www.softberry.com/berry.phtml Pattern recognition 0.55 0.54
Grail
http://grail.lsd.ornl.gov/grailexp/ Neural network 0.44 0.38
FEX Linear Discriminant 0.55 0.3
http://www.softberry.com/berry.phtml | analysis . .
FGENESP .
http://www.softberry.com/berry.phtml Hidden Markov Model 0.42 0.59

*Desirable: A sensitivity & specificity of unity => While it is remarkable that these methods
perform so well with very limited experimental data to train on, more research, new
methods and new ways of looking at DNA are required.
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P ChemGenome:

Build a three dimensional physico-chemical vector which, as it walks along the
genome, distinguishes genes from non-genes

Stacking energy (y)
06/‘

Hydrogen bond energy (X)

¥

=
£
W =
4 D :
o\e@@\@‘ &@
Q& C)\b &Q\g)
ke ‘b&‘b

Q

"A Physico-Chemical model for analyzing DNA sequences”, Dutta S, Singhal P, Agrawal P, Tomer R,
Kritee, Khurana E and Jayaram B,J.Chem. Inf. Mod. , 46(1), 78-85, 2006.
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Egg=E,, + Ej-m tE.,

Estaek = (EintEL) + (E HE ) + (EAHE ) HEGHE A+ E; ) +
(El-m+El-n+ Em-n)

Hydrogen bond & Stacking energies for all 32 wunique
trinucleotides were calculated from 50 ns long “Molecular
Dynamics Simulation Trajectories on 39 sequences encompassing all
possible tetranucleotides in the *ABC database and the data was
averaged out from the multiple copies of the same trinucleotide.
The resultant energies were then linearly mapped onto the [-1, 1]
interval giving the x & y coordinates for each of the 64 codons.

“Beveridge et al. (2004). Biophys J 87, 3799-813.
“Dixit et al. (2005). Biophys J 89, 3721-40.
Lavery et al. (2009) Nucl. Acid Res., 38(1), 299-313.
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Energy parameters (in kcal) for dinucleotides derived from molecular dynamics simulations

Dinucleotide Hydrogen bond Stacking Energy Strength parameter
AA -6.92 -26.92 -33.84
AC -9.64 -27.87 -37.51
AG -8.78 -26.91 -35.69
AT -7.05 -27.34 -34.38
CA -9.34 -27.23 -36.57
CC -11.84 -26.33 -38.17
CG -11.37 -27.83 -39.20
CT -8.78 -26.91 -35.69
GA -10.12 -26.98 -37.10
GC -12.03 -28.27 -40.30
GG -11.84 -26.33 -38.17
GT -9.64 -27.87 -37.51
TA -7.16 -27.15 -34.31
TC -10.12 -26.98 -37.10
TG -9.34 -27.23 -36.57
TT -6.92 -26.92 -33.84

Tm (C) = {(-8.69 x E) + [6.07 x In(Len)] + [4.97 x In(Conc)] + [1.11 x In (dna)]} -233.45

G. Khandelwal, J. Gupta, B. Jayaram, J. Bio Sc., 2012, 37, XXX-XXXx.
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The computed (MD derived hydrogen bond + stacking) energy (E) correlates very
well with experimental melting temperatures of DNA oligonucleotides



Solute-Solvent Interaction Energy for Genes/Non-genes

fmﬂ' ! ! ! | ! |

-2000 — —

-3000 = —

-4000 — —]

Solute Solvent Interaction Energy (Frame 1 - Frame 2)
|

5000 | | | | | | | |
0 200 400 600 800

Ecoli Genes

Coding and non-coding frames have different solvation characteristics which could be used
to build the third parameter (z) besides hydrogen bonding (x) & stacking (y)
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TTT Phe-1 |GGT Gly+1 |TAT Tyr-1 | GCT Ala+1
TTC Phe-1 |GGC Gly+1 |TAC Tyr-1 |GCC Ala+1
TTA Leu-1 |GGA Gly+1 |TAA Stop-1 | GCA Ala+1
TTG Leu-1 |GGG Gly+1 | TAG Stop-1 | GCG Ala +1
ATT e -1 CGT Arg+l | CAT His+1 | ACT Thr-1
ATC Tle +1 CGC Arg-1 |CAC His-1 | ACC Thr+1
Conjugate ATA Ile +1 CGA Arg-1 |CAA GIn-1 |ACA Thr+1
rood " | ATG Met-1 | CGG Arg+1 | CAG GIn+1 | ACG Thr-1
constrainton | TGT Cys -1 GTT Val +1 AAT Asn-1 CCT Pro +1
the 2’ TGC Cys-1 |GTC Val+l | AAC Asn+1 | CCC Pro-1
lé?]re?nn;?ﬁ;rﬁg TGA Stop-1 | GTA Val+1 | AAA Lys+l1 | CCA Pro-1
orone could |LIGG Trp -1 GTG Val +1 AAG Lys -1 CCG Pro+1
simply use AGT Ser -1 CTT Leu+1 GAT Asp +1 TCT Ser -1
t1/-lasinthe | AGC Ser +1 CTC Leu-1 GAC Asp+1 | TCC Ser-1
Tablefor 27t | AGA Arg+1 | CTA Leu-1 |GAA Glu+1 |TCA Ser-1
AGG Arg-1 |CTG Leu+l |GAG Glu+l |TCG Ser -1

Extent of Degeneracy in Genetic Code is captured by Rule of Conjugates:

Aj is the conjugate of C;, & Uy, is the conjugate of G 2:(A;x C, & G, x Uy)

With 6 h-bonds at positions 1 and 2 between codon and anticodon, third base is inconsequential
With 4 h-bonds at positions 1 and 2 third base is essential

With 5 h-bonds middle pyrimidine renders third base inconsequential;

middle purine requires third base.

B. Jayaram, "Beyond Wobble: The Rule of Conjugates”, J. Molecular Evolution, 1997, 45, 704-705.

Codons with Gi1 2 +1: ChGs or ('hTs 2 +1: ChiAs or Ch(s 2 -1



ChemGenome

A Physico-Chemical Model for identifying signatures of functional units on Genomes

Protein-nucleic acid interaction
propensity parameter

Stacking Energy

2 Hydrogen Bonding

Protein-Nucleic acid

v

Non Gene

(1) "A Physico-Chemical model for analyzing DNA sequences”, Dutta S, Singhal P, Agrawal P, Tomer R, Kritee, Khurana E and Jayaram
B, J.Chem. Inf. Mod. , 46(1), 78-85, 2006; (2) “Molecular Dynamics Based Physicochemical Model for Gene Prediction in Prokaryotic
Genomes “, P. Singhal, B. Jayaram, S. B. Dixit and D. L. Beveridge,, Biophys. J., 2008, 94, 4173-4183; (3) A phenomenological model
for predicting melting temperatures of DNA sequences”, G. Khandelwal and B. Jayaram, PLoS ONE, 2010, 5(8): e12433.
doi:10.1371/journal.pone.0012433



Distinguishing Genes (blue) from Non-Genes (red)
in ~ 900 Prokaryotic Genomes

Three dimensional plots of the distributions of gene and non-gene direction vectors for six best
cases (A to F) calculated from the genomes of

(A) Agrobacterium tumefaciens (NC_003304), (B) Wolinella succinogenes (NC_005090),

(C) Rhodopseudomonas palustris (NC_005296), (D) Bordetella bronchiseptica (NC_002927),
(E) Clostridium acetobutylicium (NC_003030), (F) Bordetella pertusis (NC_002929)



A Computational Protocol for Gene Prediction

Read the complete genome sequence in the FASTA format

!

Search for all possible ORFs in all the six reading
frames

Calculate resultant unit vector for each of the ORFs

Classify the ORFs as genes or nongenes depending on their
orientation w.r.t. universal plane (DNA space)

!

Genes and false positives

!

Screening of potential genes based on stereochemical
properties of proteins (Protein space)

!

Second stage screening based on amino acid frequencies in
Swissprot proteins (Swissprot space)

!

Potential protein coding genes



http://www.scfbio-Iitd.res.infchemgenome/index.jsp

ChemGenome T.7
GENE EVALUATOR

ChemGencorme is a physico-chemical method [1] which accepts DMNA sequence in FASTA format and
characteaerizes it as gense or nongens based on hydrogen bonding energy, stacking energy and groowe
potentials for each trinucleotide (codonj).

— g o = =

kil

- . & _” : - 4
Agrobacterium Wiialinella Rhodopseudomonas Bordetella Clostridium
tumefaciens Ssuccinogenes alustris (M 0052967 bronchiseptica acetobu i
(e _ 0032323043 (e 00S09207 = " - - T _00Z227 ) (e 00=203207%

Bordetella pertusis
(MRS 002929}

Aabowe is a pictorial representation of the separation of genes{bluse) from mnon-genesiredl.

ChemSenorme 1s ab inmitio in nature and has been tested on 294786 experimentally werified genes in 231
prokaryotic genomes. The observed awverage sensitivibty, specificity & correlation-coefficient are found to
be 9&.9%: {(min: 90%%:, max: 100%:7, 86.0%: & 85.0% respectively. Preliminary studies on eukaryotic
gernomes showw that the model successfully separates the exonic regions from the non-coding regions . &
softvware for whole genome analysis is awailable at www . scfbhio-iitd.ores imnschemasnoaome2=2

L.  chemGenome ]

Please specify the E-mail id : aileshiE@scfbic-iitd.res.in

Insaert the MNMucleotide sequence {(in FASTA format)™ Hel
=GEene Mame (This comment line is necessanry) =5
ATSTTGGETGOGTCCGCAAGSGIET ASASAN A CA NS SMSCETS SCTTATCAGGSGSAAGGCSGACASGTSGCTTISGCTCTCES
TASISS
Lo o SCCEASCAANATIE STT TCCCAGSGAGAATCTOETSEAGGEAGTATCTCCGEGTIGAAATCAALAATIGCEATANMCCTIT TS
AT
CTSCAC
LA TACCCTGEAACTAGCANMCCEASGEETTICCCCANMCCATCASSCAIEASGET SAGATITISCAAMCEGATECGEE =T
S AS A —~—

[ susrmiT | [ RESET |

| Browse... Upload

Instructions for using the Tool
- The tool takes DMNA sequence im FAST.A format as imnput file.
Browsse bto select the imnput file and upload.
The imput file canmn comntain multiple sequences, each sequence being IN FASTAS format.
For multiple sequences, please specify the E-mail address or wait for a feww minutes to get the
orn-line result.
Click on Submit to get the resultc
For further information, please sese the Help file.

Suggestions amnd Commenits

Wwee wweill be glad to receive wour suggestions and comments/feedback at scfbhiommscfbhio-iitd.res.in
References

[1] "~ Physico-Chemical model for analy=zing DRSS sequaences", Dutta S, Singhal P, aagrawvwal P, Tomsar R,

Kritee, Khurana E and Jayaram B,J7.CHherm. Inf Mod. 4 {13, 78 -85, 200&.f ABSTRACT 1.
[2] "Beyornd the wobble : The rule of conjugates", Jayvaram B, Jowrnal of Mol., Evol.,, 1997 .45.70<%.

Copwright 2Z2oo4-200&, Prof B. Jayvaram & Co-workers



The ChemGenome2.0 WebServer

http://www.scfbio-iitd.res.in/chemgenome/chemgenomenew.jsp

CHEMGENOME 2.0

An ab-initico Gene Frediction Software

Zhamogenoms is an ab-irda geanse predichon software, which find ganes in prokaryobc genomas in all six
raading franmas. Tha mothadology follaws a physico-cheamical approach and has baon validabsd on 272
prokaryotic gpenomeaes. F2ad more abour ChemGenonms

Download CHERMMGEMROME 2.0 Taor Ling= anwiranmant fram heare &

I —w+] Ericlpd [Hlvarns-]

Input Fila ' __ ) Brom=a...

[ Fun Chermgancma ][ Cloar ]

addidonal Paramebers

start Cadaon @ arc [F e [ Gra T [=]

Threshald walu=es

Method @ SE DA O Procein 2 Swissprot

E-rnail 1D : || [ CipHonal]

Fhrrasfrold Fafirar: If you hawvae small gename you can spacify Iowasr thiras hold walua bo find smallar gerns=. [F
rau have large genomeas you can specity higher treshaold walue bo wesed out fal=s=e posibdwe=

FHigrt Comdhortr s Yau can spacify what shoold bae the start cadon weith wwhich you weank bo find ganss.

rtaifeodl ;

Ddd Space: The mathod takes complalo= aor part of genoms sequenoce of prokaryotic spedoes in FAS5TA formak as
impukt fil=. [k =aarcha=s far ganas basad on physico-chamical properties of daublas-helicsl daoxyribonwclaic acd
[{m] ST

Arotenr Soace ! The method takes the result generated from ORS space as input file and wworks as a filcer based
an sbansochamical propertdes of grotain sequencss to reduca False pasitvas.

Spassmrod Spsce Thea mathod Eakas Hhe masul ganarated from prot=sin space as imput hle and cal oulatas tha
standard dawiaton of a query nuclsotds =squeno= (pradicked gane =squenca) with the =wiss prot prolbsins
basasd on Hha Faquancy of opourmancs af aminoacdds., A dareshold standard dasiabdon is chosan ko Eaap thae
false poasitire=s at minimuoum and precision st masimuom.

Thear= i= no fAle =ize limitation Ffor the genomas. YWae harse ta=tad on morse than 5 MBE genoms file =ize available
writhh bu=. IF Ehe program crashes an large genome size, more than S5 MB, please indmate us.

The computabon maw Eaka S5-10 minutas depanding upon the load on the wab =arvar and tha siza of the
gerom:s in Hha inpuk fila.

¥re wiill be glad to rec=ive your sugge stions and commentsfeedback ak scfhioB=cfhio-iitd.re<.in.
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Arabidopsis Thaliana
(Thale Cress)

Software Method Sensitivity Specificity
ChemGe_no.me . Physico-chemical model 0.87 0.89
www.scfbio-iitd.res.in/chemgenome
GeneMark.hmm
http:/Awww.ebi.ac.uk/genemark/ Sth-order Markov model 0.82 0.77
GenScan .
http://genes.mit.edu/GENSCAN.html Semi Markov Model 0.63 0.70
MZEF Quadratic Discriminant 0.48 0.49
http://rulai.cshl.org/tools/genefinder/ Analysis ’ ’
FGENF e
http://www.softberry.com/berry.phtml Pattern recognition 0.55 0.54
Grail
http://grail.Isd.ornl.gov/grailexp/ Neural network 0.44 0.38
FEX Linear Discriminant 0.55 0.32
http://www.softberry.com/berry.phtml | analysis ’ ’
FGENESP .
http://www.softberry.com/berry.phtml Hidden Markov Model 0.42 0.59

A simple physico-chemical model works just as well as any of the sophisticated knowledge
base driven methods and has scope for further systematic improvements
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Chemgenome methodology enables detection of not only protein coding regions on a genome
but also promoters (top panel) and introns (bottom panel) etc..



Solvation energies of DNA distinguish mRNA genes from tRNA genes

Relative solvation energies per base pair

| 1 | 1
] 350 VB0 1140 1520
Genome Index

Relative solvation energy per base pair of DNA sequences coding for 2063537 mRNAs (Blue) and 56251
tRNAs (Pink) from 1531 genomic sequences; calculated from MD data. The X-axis denotes the index of
the genome, the Y-axis depicts the solvation energy of the sequence relative to the average for that
genome.

G. Khandelwal, B. Jayaram, J. Am. Chem. Soc., 2012, 134 (21), 8814-8816, DOI:10.1021/ja3020956.



. Prokaryoti
DNA Energetics o YOO

Calculate melting profile using Tm

helps in predictor for longer sequences
|
1 1fvl Extract higher melting regions (relative to
ldentlfylng new the average Tm of the sequence) and
: extend them to form ORFs
genes even In |
6 9
annotated Run BLASTP against protein database
genomes! I
I
Sequences match with Sequences do not match with
protein database (GROUP I) protein database (GROUP II)

Physicochemical J-vector

No match with Match with
the query query
genome genome

Gene-like Non-Gene like

Filter sequences on the basis of
stereochemical properties of
proteins

G. Khandelwal, J. Gupta, B. Filter sequences on the basis of standard

Jayaram, J. Bio Sc., 2012. deviations in the frequencies of tripeptides
in Swissprot

|

Non-Gene
like
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Some day, it should be possible to read the book of Human Genome like a novel !!!
BOOF Mb

Gene & Gene related Sequences Extra-genic DNA
900 Mb 2100 Mb

Coding DNA Non-coding DNA Repetitive DNA  Unique & low copy number
420 Mb 1680 Mb

90 Mb (3%) !1! 810 Mb ‘

Tandemly repeated DNA Interspersed genome wide repeats

Satellite, micro-satellite, mini-satellite DNA _ _
LTR elements, Lines, Sines, DNA Transposons
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www.sctbio-iitd.res.in

*Genome Analysis - ChemGenome
A novel ab initio Physico-chemical model for whole
genome analysis

*Protein Structure Prediction — Bhageerath
A de novo energy based protein structure prediction
software

*Drug Design — Sanjeevini
A comprehensive target directed lead molecule design
protocol




Bhageerath
Protein Tertiary Structure Prediction

................ GLU ALA GLU MET LYS ALA SER GLU ASP LEU LYS
LYS HISGLY VAL THR VAL LEU THR ALA LEU GLY ALA ILE LEU
LYSLYSLYSGLY HIS HIS GLU ALA GLU LEU LYS PRO LEU ALA
GLN SER HIS ALA THR LYS HIS LYS ILE PRO ILE LYS TYR LEU

GLUPHE ILESER GLUALAILEILEHIS LEUHIS........................
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Protein Folding Problem

| -

o«

e = _al . . WL, @ ESiRaw
gy weigew: WeT g TTel
Aming acid chain grows

|
i

@
) ¥

and folds

imto & 3-D structure.
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WHY FOLD PROTEINS ?

Pharmaceutical/Medical Sector

@ Proteins

B Hormones & factors

OO DNA & nuclear receptors
Olon channels

B Unknown

Drug Targets

e Active site directed drug-design

e Mapping the functions of proteins in metabolic pathways.



Native
structure at
the bottom of

the rugged
free energy
well is the
folded protein.

ity for Bioinformatics & Computational Biology IITD

o PROTEIN FOLDING LANDSCAPE

Brginming of el formntion: amed coll s

N 2
8

Supercomputing

of prentein in
native sondormatkinn

Eliscrete hirhlimg
LT o T

Protein Folding
is considered as
a Grand
Challenge
Problem!



Protein Structure Prediction Approaches

Comparative Modeling

Homology
Similar sequences adopt similar fold is the basis.

Alignment is performed with related sequences. (SWISS-
MODEL-www.expasy.org, 3D JIGSAW-www.bmm.icnet.uk etc).

Threading

Sequence is aligned with all the available folds and scores are
assigned for each alignment according to a scoring function.
(Threader - bioinf.cs.ucl.ac.uk)
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Computational Requirements for ab initio Protein
Folding

Strategy A

® Generate all possible
conformations and find the most
stable one.

® For a protein comprising 200
AA assuming 2 degrees of
freedom per AA

® 2200 Structures => 2200 Minutes
to optimize and find free energy.

2200 Minutes = 3 x 10> Years!

Strategy B

e Start with a straight chain and
solve F = ma to capture the most
stable state

®* A 200 AA protein evolves

~ 1019 sec / day / processor

® 102 sec => 108 days
~ 106 years

With 10° processors ~ 1 Year
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From Sequence to Structure: The Bhageerath Pathway

AMINO ACID SEQUENCE
' Bioinformatics Tools

EXTENDED STRUCTURE WITH PREFORMED SECONDARY STRUCTURAL ELEMENTS

\
TRIAL STRUCTURES (~106° to 109)

\
SCREENING THROUGH BIOPHYSICAL FILTERS
' 1. Persistence Length

2. Radius of Gyration
3. Hydrophobicity
4. Packing Fraction
MONTE CARLO OPTIMIZATIONS AND MINIMIZATIONS OF RESULTANT STRUCTURES (~102 to 10°)

ENERGY RANKING AND SELECTION OF 100 LOWEST ENERGY STRUCTURES

STRUCTURE EVALUATION (Topology & PrORegli & SELECTION OF 5 LOWEST ENERGY STRUCTURES

NATIVE-LIKE STRUCTURES

Narang P, Bhushan K, Bose S and Jayaram B ‘A computational pathway for bracketing native-like
structures for small alpha helical globular proteins.” Phys. Chem. Chem. Phys. 2005, 7, 2364-2375.
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Filter-Based Structure Selection

Persistence Length Analysis of 1,000 Globular Proteins

Frequency

= « m

Persistence Length (&)

Frequency vs Hydrophobicity Ratio of 1,000 Globular Proteins

£l

s B & B B8 ©

3

1.1 1.3 '|r5 117 1.'3 1: 1
Hydrophobicity Ratio (®y)

Loss in ASA per atom of non-polar side chains
(@) =

Loss in ASA per atom of polar side chains
ASA : Accessible surface area

Radius of Gyration (in A)

Radius of Gyration vs N35 of 1,000 Globular Proteins

TEERLEEER

N35 (N= number of amino acids)

N33 plot incorporates excluded volume effects (Flory P. J., Principles
of Polymer Chemistry, Cornell University, New York, 1953) .

Frequency vs Packing Fraction of 1,000 Globular Proteins

Lo
ol

L

Frequency
i

[ ) ICI:I 'D‘!- Dld Dr.' Drl Ul:l' 1
Packing Fraction

Globular proteins are known to exhibit packing fractions
around 0.7
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Validation of Empirical Energy Based Scoring Function

Four-state reduced decoy set Lattice_ssfit decoy set
Park, B. and Levitt, M. J.Mol.Biol. 1996, 258, 367-392. Xia, Y. et al.. J.Mol.Biol. 2000, 300, 171-185.

1000 4 1600 -
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700 - . . s
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500 -
400 .
3004
2004 3 S " 1

100 - + o .

1400 -
1200 -
1000 q
800
600
400

Relative Energy(kcal/mol)
+
Relative Energy(kcal/mol)

200 1

RMSD(A) RMSD(A)

Rosetta decoy set

Lmds decoy set Simons, K.T. et al.. Proteins 1999, 37 S3, 171-176.

Keasar, C. and Levitt, M. J.Mol.Biol. 2003, 329, 159-174. 2500 —

400
g 30 g 2000 -
£ 300 3
: I
£ 250 - - < 1500 -
5 200 i H
o N =
I W 1000 -
S 100 5 ",
3 T 500 | e
50 -
0k ‘ ‘ ‘ . ‘ . oA . ‘ ‘
0 2 4 6 8 10 12 14 16 0 30 35 40
SD(AS RMSD(A)
A Represents the Nafive Structure

Narang, P., Bhushan, K., Bose, S., and Jayaram, B. J. Biomol.Str.Dyn, 2006,23,385-406;
Arora N.; Jayaram B.; J. Phys. Chem. B. 1998, 102, 6139-6144;

Arora N, Jayaram B, J. Comput. Chem., .1997, 18, 1245-1252.
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Amino Acid

SLAVE
PROCESSORS

Sequence

BhageerathArchitecture

QUTPUT

+ Secondary structure prediction
+ Generation of extended structure

+ Energy ranking
+ Structure evaluation

MASTERPROCESSOR A

5 Candidate
structures forthe

native

-7

Trial structure generation
Screening through biophysical iters
Clashremovalandenergyminimization |- = = f === = = =

Trial structure generation
Screening through biophysical iters
Clash remaval and energy minimization

F 9

Trial structure generation

Screening through biophysical ilters
Clashremovalandenergyminimization ==~~~ ~°~

o —

Trial structure generation
Screening through biophysical ilters
Clash removaland energy minimization

Bhageerath is currently implemented on a 280 processor (~3 teraflops) cluster

Jayaram et al., Bhageerath, 2006, Nucleic Acid Res., 34, 6195-6204
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A Case Study of Mouse C-Myb

DNA Binding (52 AA)

LIKGPWTKEEDQRVIELVQKYGPKRWSVIAKHLKGRIGKQCRERWHNHLNPE

Sequence

Preformed Secondary Structure

16384 Trlal Structures

Biophysical Filters & Clash Remova
10632 Structures

[
»

Energy Scans

RMSD=4.0, Energy Rank=4
Blue: Native & Red: Predicted

RMSD=2.87, Energy Rank=1774
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A Case Study of S.aureus Protein A

Immunoglobulin Binding (60 AA)

RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKIKKS

Sequence
l Preformed Secondary Structure
a . ;‘/ 1 ;/‘% . Q \ ;,\-

Biophysical Filters & Clash Remova
11255 Structures

#

RMSD=4.2, Energy Rank=44

[

Energy Scansr

RMSD=4.8; Hnergy Rank=5

Blue: Native & Red: Predicted



Performance of Bhageerath on 70 Small Globular Proteins

No. of Lowest | Energy rank of
No of Amino | Secondary |[RMSD A| lowest RMSD
S.No. | PDBID . .
Acids Structure (from |structure in top
elements native) 5 structures
1 1E0Q 17 2E 2.5 2
2 1B03 18 2E 4.4 2
3 1WQC 26 2H 2.5 3
4 1RJU 36 2H 5.9 4
5 1EDM 39 2E 3.5 2
6 1AB1 46 2H 4.2 5
7 1BX7 51 2E 3.2 4
8 1B6Q 56 2H 3.8 5
9 1ROP 56 2H 4.3 2
10 INKD 59 2H 3.9 1
11 1RPO 61 2H 3.8 2
12 1QR8 68 2H 3.9 4
13 1FME 28 1H,2E 3.7 5
14 1ACW 29 1H,2E 5.3 3
15 1DFN 30 3E 5 1
16 1Q2K 31 1H,2E 4.8 4
17 1SCY 31 1H,2E 3.1 5
18 IXRX 34 1E,2H 5.6 1
19 1ROO 35 3H 2.8 5
20 1YRF 35 3H 4.8 4
21 1YRI 35 3H 4.6 3
22 VI 36 3H 3.7 2
23 1BGK 37 3H 4.1 3
24 1BHI 38 1H,2E 5.3 2




No. of Energy rank of
S.No. | PDBID No of li&mlno Secondary | Lowest | lowest R.MSD
Acids Structure |RMSD A [structure in top 5
elements structures
25 10VX 38 1H,2E 4 1
26 116C 39 3E 5.1 2
27 2ERL 40 3H 4 3
28 1RES 43 3H 4.2 2
29 2CPG 43 1E,2H 5.3 2
30 1DVO 45 3H 5.1 4
31 1IRQ 48 1E,2H 5.5 3
32 1GUU 50 3H 4.6 4
33 1GV5 52 3H 4.1 2
34 1GVD 52 3H 5.1 4
35 IMBH 52 3H 4 4
36 1GAB 53 3H 4.9 1
37 IMOF 53 3H 2.9 5
38 1ENH 54 3H 4.6 3
39 1IDY 54 3H 3.6 5
40 1PRV 56 3H 5 5
41 1HDD 57 3H 5.5 4
42 1BDC 60 3H 4.8 5
43 115X 61 3H 3.6 3
44 115Y 61 3H 3.4 5
45 1KU3 61 3H 5.5 4
46 1YIB 61 3H 3.5 5
47 1AHO 64 1H,2E 4.5 4
48 1DF5 68 3H 3.4 1
49 1QR9 68 3H 3.8 2
50 1AIL 70 3H 4.4 3




No. of Energy rank of
. . Secondary Lowest | 10Vest RM.SD
S.No. PDBID [No of Amino Acids Structure _SD A structure in
top 5
elements
structures
o1 2G70 68 4H 5.8 2
52 20CH 66 4H 6.6 3
53 1WR? a1 CEE = :
o4 2B7E 59 4H 6.8 4
99 1FAF 79 e = :
o6 1PRB 53 4H 6.9 4
57 1DOQ 69 5H 6.8 3
o8 1127 61 4H 5.4 4
59 2CMP 56 4H 5.6 |
60 1BW6 56 4H 4.2 |
61 1X4P 66 4H 5.2 3
62 2K2A 70 4H 6.1 1
63 1TGR 52 4H 6.8 2
64 2V75 90 5H 7.0 3
65 1HNR 47 2E,2H 5.2 >
66 2KJF 60 4H 5.0 4
67 1RIK 29 2E,2H 4.4 4
68 1JEI 53 4H 5.8 5
69 2HOA 68 4H 6.3 4
70 2DT6 62 4H 5.9 3
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TR Predicted Structures with Bhageerath
for 70 Globular Proteins superposed on their corresponding experimental structures
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No | Protein CPHmodels ESyPred3D Swiss-model 3D-PSSM
PDB ID RMSD(A) RMSD(A) RMSD(A) RMSD(A)

1. | 1IDY (1-54)* | 3.96 2-54)* | 3.79 2-51)* | 5.73(-51)* | 3.66 (1-51)*

2. | IPRV (1-56)* | 5.66 (2-56)* | 5.56 (3-56)* 6.67 3-56)* | 5.94 (1-56)*

*Numbers in parenthesis represent the length (hnumber of amino acids) of the protein model.
#Structure with lowest RMSD bracketed in the 5 lowest energy structures.

The above two proteins have maximum sequence similarity of 38% and 48% respectively.

In cases where related proteins are not present in structural databases Bhageerath
achieves comparable accuracies.

Homology models are simply superb where the similarities between query sequence
and template in the protein data bank are high. Where there is no match/similarity
ab initio methods such as Bhageerath are the only option.
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The Protein Structure Prediction Olympics: CASP9
(May 34 to July 17, 2010: 129 Targets)
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Bhageerath vs other servers for Template free prediction

iIn CASP9

TASSER ROBETTA | SAM-T08

Target No.of Bhageerath | RMSDA | RMSDA | RMSD A
No. residues | PDBID | RMSD A

T0531 65 2KJIX 7.1 11.0 11.9 12.6
TO553 141 2KY4 0.6 6.0 11.5 8.6
T0581 136 3NPD 15.8 11.6 5.3 15.1
TO578 164 SNAT 19.2 11.6 15.5 19.1

While Bhageerath — an ab initio method - works well for small proteins
(<100 residues), improvements are necessary to tackle larger proteins
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Development of a homology - ab initio hybrid server
Bhageerath-H Protocol

Complete Amino Partially Structured
Acid Sequence protein

\, l

Sequence Alignment Tracing Missing
Residue Stretch
A4 ]/
Template Selection
Based on MSA Secondary Structure
l Prediction
Template based Bhageerath 3D
Modeling Modeling
| Patching |

l Simulation

Five Best Structures



Bhageerath-H Results Bhageerath-H Results
in CASP9 Post CASP9

mlto7A m7t010A wm>10A mlto7A wm7t0ol10A w>10A

Total Number of Targets: Total Number of Targets:
50 105
Average RMSD: 8.7 A Average RMSD: 6 A

\\\_// /

Homology ab initio hybrid methods are getting better in tertiary structure prediction
Bhageerath-H is a participant in CASP10 (May-July, 2012)

Stay Tuned to (http://predictioncenter.org/casp10/) for further progresses v




BHAGEERATH : An Energy Based Protein Structure Prediction Server

The present wversion of"Bhageerath” accepts amino acid sequence and secondary structure information to predict 10
candidate structures for the native. It is anticipated that at least one native like structure (RMSD = 64 without end loops)
15 present in the final structures, The server has been validated on 50 small globular proteins, Know about Protein Folding

Download BHAGEERATH 1.0 for Solaris 10.0 environment from here,

[Repository] [General Info]l [Links] [Help]l [Home]

Process ID 56703599

E-rmail Address: | | [Cptianal)

Input &mino acid sequence in FASTS format OR Click on the Amino acid to add to the sequence

|[ aLA ]”[ YAL ]”[ LELJ ]”[ ILE | ||[ PRO ]|

|[ MET ]”[ FHE ]”[ TRFP ]”[ GLY | ||[ SER

|_|

|[ THR ]”[ cYs ]”[ ASH ]”[ GLHN ]||[T‘r’R

—

|[ ASP ]”[ GLU ]”[ Lvs ]”[ ARG ]|| [ HI=

—

Secondary Structure Information

& Auto Secondary Structure Prediction ) Enter Secondary Structure Information

Residue Range | | - | | add Clear

[ supmIT | [ supmMIT | [ RESET |

Retrieve previous results

Job ID: | | [ et status |

In case of any Suggestions/Exceptions, Please contact us at scfbio@scfbio-iitd .res.in



BEHAGEERATH-H: A Homology ab-intio Hybrid Web server for Protein Tertiary Sttucture Prediction

"Bhageerath-H" accepts amino acid sequence to predict 5 candidate structures for the native. Here user has the flexibility
to mention reference POB{s) for modeling. Method has been fielded in 2SASP9 Experimment and has been improved since.

[Repository] [Tutorial]l] [Sample File] [Links] [Help]l] [Home]

Process ID 1764624

E-rnail Address: | |

Upload sequence in FASTA farmat | Choose File | pja file chosen

OR Input Amino acid sequence in FASTA format

|[ALA]||[UA|_]||[|_EI_|] ||[1LE] ||[F'RO]|
|[MET]||[F'HE]||[TRF']”[GL“(] ||[SER]|
P |[THR]”[CYS]”[F\SN]”[GLN]”[T‘r’R]l
|[F\SP]||[GLLI]||[L‘YS] ”[ARG]” [HIS]l

Template Information

& Auto Template Searching user Defined Template

| |eppBIp -| | chainiDp | add | | Clear

[ suemIT | [ RESET |




In search of rules of protein folding:
Margin of Life: Amino acid compositions in proteins have a tight distribution

The average percentagse ocowrrsnce of csach amino-
acid for folded proteins gives the “Chargaff’s rules™
for protein folding and the standard dewviations give S

the “margin of life™. The average percentage occurrence of each amino-acid
from the ExPASy Server.

Folded Froteins —

Margin of Life Protein sequences confirmed
{mesan *+ std, by annotation and experiments
Aomino A cid n=37F18) Amino Acid (mean = std. n = 131855)
s T8 34 A T2 30
T FT.A1E 224 w 6.3 x2.1
E SBxXx24 I 5122
L. 2.0+ 29 . 9.6 2.9
ot 244 17 h'g 3.0+ 1.5
F 3918 ¥ 3918
W B s T e B ] W 1.2 = 0.9
= 4.4 & 20 P S4x+x2.6
I 22+13 % 22+ 1.3
L5 b e i B C 1.92+23
i & S5 24 T 55+ 1.8
= SO0Ox 25 S 79 +28
<Q 3820 Q 4320
Inl 4.3+ 22 ™ 4.2 = 1.9
bl 5.8%x 20 D 52 +1.9
E FOX 27 E 6.8 2.8
H 22+ 14 H 2413
j=4 S0x 23 R 53x+2.9
K S 3 2R K 6.0x2.9
= F.2H 28 G 6.6 2.8

The average percentage occurrence of each amino acid. thear STT2 as
observed and as calculated from the binomaial distobution.

P (%60 ST (obsaerved) ST {randaorm)
A 7.8 3.4 T2
w7 F.1 2.4 6.6
I 58 2.4 55
T. 9.0 2.9 5.2
o 3.4 1.7 3.3
¥ 3.9 1.8 3.7
A 1.3 1.0 1.3
P 4 . 2.0 4.2
™M Z2 1.3 2.2
L 1.8 1.5 1.8
n 5.5 2.4 5.2
s & O 2.5 5.6
Q 3.8 2.0 3.7
~ 4.3 2.2 4.1
D] 5.8 2.0 5.5
E 7.0 2.7 6.5
H 23 1.4 22
R 5.0 2.3 4.8
K e.3 2.8 59
G T2 2.8 6.7

Mezei (2011), JBSD



In search of rules of protein folding:

Co atoms of proteins of varying sequences and sizes follow a single (universal)
spatial distribution

Number of Contacts

Distance (A)
All 400 Ca spatial distributions (above) collapse into one narrow band (below)
irrespective of the chemical nature of the amino acids when their percentage
occurrences are considered => A Stoichiometric Hypothesis for Protein Folding.

0 o
o ]

Number of
Contacts/Y,,
0
N

Y =Y, (1-eKX)n

o
N

o

20 40 60
Distance (A)
Mittal & Jayaram et al., (2010) JBSD, 28, 133-142; (2011), JBSD, 28, 443-454; (2011), JBSD, 28, 669-674.

While structure prediction attempts are progressing well, rules of folding are still elusive.



Implications of SNPs

Cartoon representation of the structure of
Human Angiogenin (PDB entry 1BI1I)
showing its functional sites; catalytic triad
residues are represented as stick
models, nuclear localization signal is
represented in magenta color and receptor
binding site is represented in orange color.

Mutations in the coding region of the ANG (angiogenin) gene have been found in patients suffering from Amyotrophic
Lateral Sclerosis (ALS). Neurodegeneration results from the loss of angiogenic ability of ANG (protein coded by ANG gene).
This is one of the several examples where SNPs could lead to disease/disorder or a predisposition. We performed extensive
molecular dynamics (MD) simulations of wild-type ANG protein and disease associated ANG variants to elucidate the
mechanism behind the loss of ribonucleolytic activity and nuclear translocation activity, functions needed for angiogenesis.
MD simulations can yield information on structural and dynamic differences in the catalytic site and nuclear localization
signal residues between WT-ANG (Wild-type ANG) and six mutants. Variants K171, S28N, P112L and V113l have
confirmed association with ALS, while T195C and A238G single nucleotide polymorphisms (SNPs) at the gene level
encoding L35P and K60E mutants respectively, have not been associated with the disease. Our results show that the loss of
ribonucleolytic activity in K171 is caused by conformational switching of the catalytic residue His114 by 99°. The loss of
nuclear translocation activity of S28N and P112L is caused by changes in the folding of the residues 3*RRR33 that result in
the reduction in solvent accessible surface area. Based on the results obtained, we predict that V1331 mutant will exhibit loss
of angiogenic properties by loss of nuclear translocation activity and L35P mutant by loss of both ribonucleolytic activity and
nuclear translocation activity. No functional loss was inferred for K60E. This is just an illustration of how molecular
simulations on protein tertiary structures can be used to infer functional implications of mutations. MD simulations on a
series of mutants are time consuming. Faster methods are required for genomic scans.

(A. K. Padhi, H. Kumar, S. V. Vasaikar, B. Jayaram and James Gomes, "Mechanisms of Loss of Functions of Human
Angiogenin  Variants Implicated in Amyotrophic Lateral Sclerosis”, PL0oS One, 2012, 7(2): e32479.
doi:10.1371/journal.pone.0032479)
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www.scibio-iitd.res.in

*Genome Analysis - ChemGenome
A novel ab initio Physico-chemical model for whole
genome analysis

*Protein Structure Prediction — Bhageerath
A de novo energy based protein structure prediction
software

*Drug Design — Sanjeevini
A comprehensive target directed lead molecule design
protocol
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Target Directed Lead Design
A\ Sanjeevini

1

Aikim Ela
s it

Given the structure of the drug target, design a molecule that will bind to the target with high affinity and specificity



COST & TIME INVOLVED IN DRUG DISCOVERY

Target Discovery

Bicinformatics / Gompound Library
2.5yrs l 4% Molecular Biology v
(Target Finding) Virtual / Real Structural Biology and
- High Through i
Lead Generation =— {Scl?eenir[::lg put Molecular Modeling
|::> Targets Hits %
L - .
Lead Optimization —
Medicinal
3.0yrs l 15% A ¢ Chemistry
Preclinical Development BN Load Optimization
1.0yrs 10% p
' . . . Searoh puorme™™
Phase I, II & III Clinical Trials Selection
Preclinical Dev. Efﬂg:i"!l T
Clinical Development andidate
6.0yrs 68% Hegis:rat'run Pharmacology
L h
FDA Review & Appl’OVﬂl o Pharmacokinetics & Metabolism
1.5yrs 3%
Drug to the Market
14 yrs $1.4 billion

Source: PAREXEL’s Pharmaceutical R&D Statistical Sourcebook, 2001, p96.; Hileman, Chemical Engg. News, 2006, 84, 50-1.



Pharmaceutical R&D is Expensive

New Chemical Entities (NCEs) need to be continuously
developed since income from older drugs gets gradually
reduced on account of increasing competition from other
products, generics as well drug resistance.

Drug Development is an Uphill Task
1035 new drugs approved by FDA between 1989 to 2000
361 (35%) were New Molecular Entities (NME).

Only 15% were deemed to provide significant improvement
over existing medicines.

http://www.seniors.gov/articles/0502/medicine-study.htm






&g —
o Present Scenario of Drug Targets

100

80

(o2}
o

Number of Targets
N
o

20

Enzymes  Receptors Nuclear DNA, RNA, lon Channels Antibody  Transporters Unknown/
Receptors Ribosomes Targets Misc.

BLUE: Number of targets in each class. (imming P, Sinning C, Meyer A. Nature Rev Drug Discov 2006;5: 821)

(Total 218 targets & 8 classes)
GREEN: Number of 3D structures available in each class (Total: 130) (Protein Data Bank)

Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram, B. Current Pharmaceutical Design, 2007, 13, 3454-3470.
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Some Concerns in Lead Design In Silico

Novelty and Geometry of the Ligands

Accurate charges and other Force field parameters
Ligand Binding Sites

Flexibility of the Ligand and the Target

Solvent and salt effects in Binding

Internal energy versus Free energy of Binding
Druggability

Computational Tractability




De novo LEAD-LIKE MOLECULE DESIGN: THE SANJEEVINI PATHWAY

Database mmmp Candidate molecules <= User

Drug Target Identification Mutate / Optimize

Drug-like filters <

Geometry Optimization
Quantum Mechanical Derivation of Charges
Assignment of Force Field Parameters

Active Site Identification on Target &

3-Dimensional Structuré —, Ligand Docking

of Target

Energy Minimization of Complex
Binding free enegey estimates - Scoring

Molecular dynamics &
post-facto free energy component analysis (Optionaj)

Lead-like compound

Jayaram, B., Latha, N.,Jain, T., Sharma, P., Gandhimathi, A., Pandey, V.S., Indian Journal of Chemistry-A. 2006, 45A, 1834-1837.
Tanya Singh, Goutam Mukherjee, Abhinav Mathur, B. Jayaram, Sanjeevini — A User Manual, 2012, manuscript in preparation



Sanjeevini Pathway
SN = 2

NRDBM /M illion M olecule AL or
Library/Natural Products : \/?. A
and Their Derivatives {7784;(#

M olecular D atabase or, Ligand Molecule Target Protein/D N A

Upload
\ 4

Bioavalibality Check

Binding EnergyEstimation ——e———— (Lipinski Com pliance)

by RASPD protocol

\ 4
Prediction of all possible
active sites (for protein only
and if binding site is not
known).

Geometry Optimization
TPACMA4/Quantum Mechanical
Derivation of Charges \_

YT

Assignment of Force Field Parameters

— T~

Ligand Molecule ready for Docking Protein/DNA ready for Docking
NH,
NZ TN
— | AN +
© H\\\\\\‘ = N )ﬁ/‘\'\l 4
S
\—n

\_

'

Dock & Score

M olecular dynamics & post-facto free energy componentanalysis (O ptional)




Molecular Descriptors / Drug-like Filters

Lipinski’s rule of five

Molecular weight

Number of Hydrogen bond acceptors < 10

Number of Hydrogen bond donors <5

[olo] <5

Additional filters

Molar Refractivity

Number of Rotatable bonds



http://www.sctbio-iitd.res.in/utility/LipinskiFilters.jsp

Lipinski Rule of Five

Lipinski rule of 5 helps in distinguishing between drug like and non drug like molecules. It
predicts high probahility of success or failure due to drug likeness far molecules complying
with 2 ar more of the following rules

Malecular mass less than 500 Dalton

High lipophilicity {expressed as LogP less than 5)
Less than 5 hydrogen bond donars

Less than 10 hydrogen bond acceptars

Molar refractivity should be between 40-130

LT

These filters help in early preclinical development and could help avoid costly late-stage
preclinical and clinical failures To draw a chemical structure Click Here and follow the
instructions given.

_ —
Displays Lipinski Drug Filters
Results
Upload the file in the given format[Zample File]:
’ Browse... l ’ Upload
How to Use the Tool
OPTIOMN 1:-

1. The inputFile should be a pdb file (See Sample File to see the format)
2. The inputfile name should not contain whitespace(s).

3. Browse and Upload the file.

4. Click on Submit.

5

. Ifthe results were not showing, please recheckyou input file format and submit it again.




http://www.sctbio-iitd.res.in/dock/ActiveSite new.jsp

t - Supercomputing Facility for Bioinformatics & Computational Biology, lIT Delhi

.

r_'-_Hc'-_rnE | Group | Publications | Rezources | Contact Us

Welcorme to the Active Site prediction

fctive Site Prediction of Protein server computes the cavities in a given protein.

Click here to see 'How to Use Tool'.  [Sample Protein File]  [Sarmple Drug File]
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Top ten cavity points capture the active site 100 % of time in 640 protein targets
100 .

P g0 i e
: 7
C 60
E
N 40
)
A 20
G
E o .
0 2 4 6 8 10
Prediction accuracies of thé"iCtive site by different softwares
Sl. No Softwares Topl Top3 TopS Top10
1 SCFBIO(Active 73 92 95 100
Site Finder)
2 Fpocket 83 92 -
3 PocketPicker 72 85 -
4 LiGSITE® 69 87 -
5 LIGSITE 69 87 -
6 CAST 67 83 -
7 PASS 63 81 -
8 SURFNET 54 78 -
9 LIGSITE®® 79 - -




http://www.sctbio-iitd.res.in/software/drugdesign/raspd.jsp

Supercomputing Facility for Bicinformatics & %
Computational Biology, IIT Delhi = ,w.i:

Home | Drug Design Software

RASPD for Preliminary Screening of Drugs

The challenge for computer aided drug discovery is to achieve this specificity - with small molecule inhibitors - in
binding to target proteins, at reduced cost and time while ensuring synthesizability, nowvelty of the scaffolds and
proper ADMET profiles. RASPD i1s a computationally fast protocol for identifving good candidates for any target
protein. The binding pocket of the input target protein is scanned for the number of hydrogen bond donors,
acceptors, number of hydrophobic groups and number of rings. & QSAR type equation combines the afore-
mentioned properties of the target protein and the candidate molecule and an estimate of the binding free energy is
generated if the target protein were to complex with the candidate, The most interesting feature of this methodology
is that it takes fraction of a second for calculating the binding affinities of the protein-candidate molecule complexes
as opposed to several minutes in known art today for regular docking and scoring method, whereas the accuracy of
this method in sorting good candidates is comparable with the conventional technigues, We have also created million
molecules database. This database is prepared to include chernical formula, structure, topological index, number of
hydrogen bond donors and acceptors, number of hydrophobic groups, number of rings, logP values for each of the
million molecules, Scoring of 1 million small molecule database by RASPD method to identify hits for a particular
protein target is also web enabled for free access at the same site,

kKnow more about RASPD Sereeing. Click here to see How to Use Tool'. Click here to see
"Computational Flow Chart'.

Method A: Protein-Ligand Complex Method B:Only Protein3D Structure

Browse..

Enter Drug Id: |DRG

Step 2: Click on 'Submit’ to submit your job
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Quantum Chemistry on Candidate drugs for
Assignment of Force Field Parameters

6-31G*/RESP

-0.1206

G. Mukherjee, N. Patra, P. Barua and B.

TPACM-4

-0.7958

Jayaram, (2011), JCC, 32,893-907.




http://www.sctbio-iitd.res.in/software/drugdesign/charge.jsp

Transferrable Partial Atomic Charge Meodel - up to 4 bonds
(TPACMA4)

Download Partial Charge for Linus environment,

Sample File A set of 6 nucleic bases. How to use TPACM4S taol,

Training Set.  Look Up Table of Atomitype Look Up Table of Charge PDEB FILE FORMAT

Forrmal Charge |0

Input PDB file .

[ Subnr it ][ Reset]
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MONTE CARLO DOCKING OF THE CANDIDATE DRUG IN THE
ACTIVE - SITE OF THE TARGET

www.sctbio-iitd.res.in/dock/pardock.jsp

RMSD between the docked &
the crystal structure is 0.2A

ENERGY MINIMIZATION

!

5 STRUCTURES WITH LOWEST ENERGY SELECTED
A. Gupta, A. Gandhimathi, P. Sharma, B. Jayaram , (2007), PPL, 14, 632-646.
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RMSD between the crystal structure and one of the top five docked structures
T. Singh, D. Biswas and B. Jayaram, AADS - An automated active site identification, docking and scoring protocol for
protein targets based on physico-chemical descriptors, (2011), JCIM, 51 (10), 2515-2527



'ENERGY BASED SCORING FUNCTION

o — o o _ o o
AG bind AH el +AH vdw TAS rtve +AG hpb

g 12 | Protein-Drug
% -14 - “ Correlation between experimental &
5 12 | calculated binding free energy for 161
L
g 107 protein-ligand complexes (comprising 55
L 2 unique proteins)
5 2] r=0.92 .
E 0 ‘ ‘ ‘ Jain, T & Jayaram, B, FEBS Letters, 2005, 579, 6659-6666
- 5 10 15 20 .. . : _
h Calculated Binding Free Energy (keal/mol) www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp

40

35 | DNA-Drug Correlation between experimental

30 | AT and calculated free energy of
£ 257 interaction for DNA-Drug Complexes
g5 20 -
g 15 |
£ 10 | S.A Shaikh and B.Jayaram, J. Med.Chem. , 2007, 50, 2240-
3 | 2244
& r=10.90

0 T T T T
0 -10 -20 -30 -40 -50  www.scfbio-iitd.res.in/software/drugdesign/preddicta.jsp

Calculated Free Energy of interaction (kcal/mol)



Comparative Evaluation of Scoring Functions

S, Scoring Dataset Correlation Reference
No.| Function Method | Training | Test Coef(i:)cient

1 Present Force field / 61 100 r=0.92 FEBS Letters, 2005, 579, 6659

" | Work(BAPPL*) | Empirical

2. DOCK Force field - - - J. Comput.-Aided Mol. Des. 2001, 15, 411
3. EUDOC Force field - - - J. Comp. Chem. 2001, 22, 1750

4, CHARMmM Force field - - - J. Comp. Chem. 1992, 13, 888

5. AutoDock Force field - - - J. Comp. Chem. 1998, 19, 1639

6. DrugScore Knowledge - - - J. Mol. Biol. 2000, 295, 337

7. SMoG Knowledge - 36 r=0.79 J. Am. Chem. Soc. 1996, 118, 11733

8. BLEEP Knowledge - 90 r=0.74 J. Comp. Chem. 1999, 202, 1177

9. PMF Knowledge - 77 r=0.78 J. Med. Chem. 1999, 42, 791

10. DFIRE Knowledge - 100 r=0.63 J. Med. Chem. 2005, 48, 2325

11. SCORE Empirical 170 11 r=0.81 J. Mol. Model. 1998, 4, 379

12. GOLD Empirical - - - J. Mol. Biol. 1997, 267, 727

. 82 12 r=0.83 J. Comput.-Aided Mol. Des. 1994, 8, 243 &

13. LUDI Empirical 1998, 12, 309

14, FlexX Empirical - - - J. Mol. Biol. 1996, 261, 470

15. ChemScore Empirical 82 20 r=0.84 J. Comput.-Aided Mol. Des. 1997, 11, 425
16. VALIDATE Empirical ol 14 r=0.90 J. Am. Chem. Soc. 1996, 118, 3959

17. Ligscore Empirical 50 32 r=0.87 J. Mol. Graph. Model. 2005, 23, 395

18 X-CSCORE Empirical 200 30 r=0.77 J. Comput.-Aided Mol. Des. 2002, 16, 11

(consensus)
19 GLIDE Force _fi_eld/ - - - J. Med. Chem. 2004, 47, 1739
Empirical
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Correlation  between the  predicted and
experimental binding free energies for 90 zinc
containing  metalloprotein-ligand ~ complexes
comprising 5 unique targets

T. Jain & B. Jayaram, Proteins: Struct.
Funct. Bioinfo. 2007, 67, 1167-1178.

Predicted Binding Frea Energy (kcalimal)
=

. 3 D 2 2 F I R TR S-S www.scfbio-iitd.res.in/software/drugdesign/bapplz.jsp

Experimantal Binding Free Enargy (kcalimaol)

Contributing . . Training Test 2
S. No. Group Method Protein Studied Set Set R
Comparative evaluation of some L Donini et al MM-PBSA MMP - 6
methodologies  reported  for 2. Raha et al QM CA & CPA - 23 0.69
estimating binding affinities of 3 Toba et al FEP MMP - 2 -
. .. . 4, Hou, et al LIE MMP - 15 0.85
zinc containing metalloprotein- .
) 5. Hu et al Force Field MMP - 14 0.50
ligand complexes 6. Rizz0 et al MM-GBSA MMP - 6 0.74
7. Khandelwal et al QM/MM MMP - 28 0.76
Force Field/ | CA, CPA, MMP,
8. Present Work Empirical AD & TL 40 50 0.77
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HIY-I Protease complered with UTS275 (Lhiv.pdb)

Welcome to the BAPPL server

Binding Affinity Prediction of Protein-Ligand (EAPPL) server computes the binding free energy of a non-
metallo protein-ligand complex using an all atom energy based empirical scoring function [1] & [2].
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ParDOCK

Automated Server for Protein Ligand Docking
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— Optimum size of DNA as a drug target

TGCATGCA_plasmodium

TGCATGCA_Humans

= === GTGTGCACAC_Plasmodium

e GTGTGCACAC_Humans

Log ,, of Frequencies
N

= === GCACGCGTGC_Plasmodium

= GCACGCGTGC_Humans

Number of Base Pairs

Logarithm of the frequencies of the occurrence of base sequences of lengths 4 to 18 base pairs in
Plasmodium falciparum and in humans embedding a regulatory sequence TGCATGCA (shown in
green), GTGTGCACAC (blue) and GCACGCGTGC (orange) or parts thereof, of the plasmodium.
The solid lines and the dashed lines correspond to humans and plasmodium, respectively. Curves lying
between 0 and 1 on the log scale indicate occurrences in single digits.

One needs to cover at least 18 bp for uniqueness of the drug target
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PreDDICTA

Predict DNA-Drug Interaction strength by Computing 4Tm and Affinity of binding,

0.
About Preddicta ( i d

DA Drug Interaction

= B o=

B
=1

Calculated A0

=

D& Drug Complex Data Set HPBDN0G 5T
Expenmental AGP

S.A Shaikh and B.Jayaram, J. Med.Chem. , 2007, 50, 2240-2244
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P. Kalra, T. V. Reddy, and B. Jayaram, "Free energy component analysis for drug design: A case
study of HIV-1 protease-inhibitor binding", J. Med. Chem., 2001, 44, 4325-4338.
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ffinity / Specificity Matrix for Drugs and Their Targets/Non-Targets "

Shalkh S., Jain. T., Sandhu, G., Latha, N., Jayaram., B., A physico-chemical pathway from targets to leads, 2007, Current Pharmaceutical
Design, 13, 3454-3470.

Drugl Drug2 Drug3 Drug4 Drug5 Drug6 Drug7 Drug8 Drug9 Drug10 Drugll Drug12 Drug13 Drugl4

Targetl
Target2
Target3
Target4
Target5

Target6

Target7
Target8
Target9
Target10
Targetll
Target12

Targetl3

Targetl4

BLUE: HIGH BINDING AFFINITY GREEN: MODERATE AFFINITY ORANGE: POOR AFFINITY

Diagonal elements represent drug-target binding affinity and off-diagonal elements show drug-non target binding affinity. Drug 1 is specific to Target 1, Drug 2 to Target 2 and so on. Target 1 is
lymphocyte function-associated antigen LFA-1 (CD11A) (1CQP; Immune system adhesion receptor) and Drug 1 is lovastatin.Target 2 is Human Coagulation Factor (1CVW; Hormones &
Factors) and Drug 2 is 5-dimethyl amino 1-naphthalene sulfonic acid (dansyl acid). Target 3 is retinol-binding protein (1FEL; Transport protein) and Drug 3 is n-(4-hydroxyphenyl)all-trans
retinamide (fenretinide). Target 4 is human cardiac troponin C (1LXF; metal binding protein) and Drug 4 is 1-isobutoxy-2-pyrrolidino-3[n-benzylanilino] propane (Bepridil). Target 5 is DNA
{1PRP; d(CGCGAATTCGCG)} and Drug 5 is propamidine. Target 6 is progesterone receptor (1SR7; Nuclear receptor) and Drug 6 is mometasone furoate. Target 7 is platelet receptor for
fibrinogen (Integrin Alpha-11B) (1TY5; Receptor) and Drug 7 is n-(butylsulfonyl)-o-[4-(4-piperidinyl)butyl]-I-tyrosine (Tirofiban). Target 8 is human phosphodiesterase 4B (1XMU; Enzyme)
and Drug 8 is 3-(cyclopropylmethoxy)-n-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)benzamide (Roflumilast). Target 9 is Potassium Channel (2BOB; lon Channel) and Drug 9 is
tetrabutylammonium. Target 10 is {2DBE; d(CGCGAATTCGCG)} and Drug 10 is Diminazene aceturate (Berenil). Target 11 is Cyclooxygenase-2 enzyme (4COX; Enzymes) and Drug 11 is
indomethacin. Target 12 is Estrogen Receptor (3ERT; Nuclear Receptors) and Drug 12 is 4-hydroxytamoxifen. Target 13 is ADP/ATP Translocase-1 (LOKC; Transport protein) and Drug 13 is
carboxyatractyloside. Target 14 is Glutamate Receptor-2 (2CMO; lon channel) and Drug 14 is 2-({[(3e)-5-{4-[(dimethylamino)(dihydroxy)-lambda~4~-sulfanyl]phenyI}-8-methyl-2-oxo-
6,7,8,9-tetrahydro-1H-pyrrolo[3,2-H]isoquinolin-3(2H)-ylidene]amino}oxy)-4-hydroxybutanoic acid. The binding affinities are calculated using the software made available at
http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp and http://wwuw.scfbio-iitd.res.in/preddicta.
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Future of Drug Discovery: Towards a Molecular View of
ADMET (Absorption, Dlstrlbutlon Metabolism, Excretion & Toxicity)
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v
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Drug Target

The distribution path of an orally administered drug molecule inside the body is depicted. Black
solid arrows: Complete path of drug starting from absorption at site of administration to

distribution to the various compartments in the body, like sites of metabolism, drug action and
: Path of drug after

excretion. Dashed arrows: Path of the drug after metabolism. Dash-dot arrows
eliciting its required action on the target. Dot arrows: Path of the drug after being reabsorbed into

circulation from the site of excretion.
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From Genome to Hits
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Hits
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~ 6 teraflops of computing; 20 terabytes of storage + huge brain power
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Let us go climb Everest, cure cancer .......



Supercomputing Facility for Bicinformatics &
Computational Biology, IIT Delhi

Sitemap | Biogrid | Tenders | Mail

- -.-:;

o

Contact L=

&' Abhout Us

To develop nowvel scientific methods and
highly efficient algorithns for Genome
analysis, Protein structure prediction and
active site directed Drug Design to
pursue the dream, GEME to DRUG.....
read more=:=

Research
Software 2 Tools

Publications

The facility is cormmitted tow ards
Services providing bioinformatics and
computational biology tools and software
T ioEialE CchemGenome frealy accessible to hioinformatics

Genome Analysis Software Suite community.

Collaborations

Bhageerath o
T Protein Structure Prediction Software Gc}f.;gle
- Sanjeevini
Mideo In-5Silica Drug Design Software | | [ Search ]
Photo Gallery ABC DNA Simulation & Search SCFBio O Search Web

Lead Invent
A spin off company from SCFRIo.

HRE Training

Visit Us at
Thank You



