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Abstract: The discovery of new pharmaceuticals via computer modeling is one of the key challenges in modern medicine. The advent of 
global networks of genomic, proteomic and metabolomic endeavors is ushering in an increasing number of novel and clinically important 
targets for screening. Computational methods are anticipated to play a pivotal role in exploiting the structural and functional information 
to understand specific molecular recognition events of the target macromolecule with candidate hits leading ultimately to the design of 
improved leads for the target. In this review, we sketch a system independent, comprehensive physicochemical pathway for lead mole-
cule design focusing on the emerging in silico trends and techniques. We survey strategies for the generation of candidate molecules, 
docking them with the target and ranking them based on binding affinities. We present a molecular level treatment for distinguishing af-
finity from specificity of a ligand for a given target. We also discuss the significant aspects of drug absorption, distribution, metabolism, 
excretion and toxicity (ADMET) and highlight improved protocols required for higher quality and throughput of in silico methods em-
ployed at early stages of discovery. We present a realization of the various stages in the pathway proposed with select examples from the 
literature and from our own research to demonstrate the way in which an iterative process of computer design and validation can aid in 
developing potent leads. The review thus summarizes recent advances and presents a viewpoint on improvements envisioned in the years 
to come for automated computer aided lead molecule discovery. 
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1. INTRODUCTION 

 Drug discovery and development is a cost and time intensive 
process involving many considerations in molecular design, synthe-
sis, testing and evaluation of drug effects ranging from local inter-
actions at the molecular/cellular level to global effects on the organ-
ism and population. Only 20% of drug discovery projects are re-
ported to lead to a clinical candidate and only 10% of the com-
pounds that enter clinical development achieve registration. An 
analysis of the reasons for this apparently low success reveals that 
poor pharmacokinetics, toxicity and lack of efficacy are the major 
factors responsible for failures [1]. Issues like target specificity and 
affinity, drug delivery, toxicity, side effects etc. must be dealt with 
in parallel for improving the success rates. It is now well docu-
mented that the number of years to bring out a drug from concep-
tion to market is approximately 8-10 years, costing on an average 
US $1.2 billion to $1.4 billion and above per drug [2]. The in-
volvement of genomics [3], proteomics [4], bioinformatics [5] and 
efficient technologies like, combinatorial chemistry [6], high 
throughput screening (HTS) [7], virtual screening [7], in vitro, in 
silico ADMET screening [8], de novo and structure-based [9] drug 
design serves to expedite as well as economize the modern day drug 
discovery process. 

 Structure based computational drug design methods mainly 
focus on the design of molecules for a target site with known three 
dimensional structure followed by a determination of their affinity 
for the target, based on which a set of hits are obtained [10-12]. The 
process of structure-based drug design is an iterative one and often 
proceeds through multiple cycles before an optimized lead goes into 
clinical trials [13,14]. High throughput screening is the physical 
screening of large libraries of chemical compounds against a bio-
logical target and is still the dominant technique in drug discovery. 
Virtual screening forms an alternative approach and uses computer-
based methods to screen large chemical libraries targeted towards a 
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biological receptor [15,16] and this task is facilitated significantly 
by the advent of high performance computing environments, data 
management software and internet to offer the advantage of deliver-
ing new drug candidates more quickly and at lower costs [17-19].  

 The major roles of computation in drug discovery [20] are; (1) 
virtual screening and de novo design [9,21], (2) evaluation of drug-
likeness [22-24] and (3) advanced methods for determining protein-
ligand binding [25]. This review summarizes the current computa-
tional strategies for rational drug design based on atomic models to 
generate candidate molecules, to identify good binders/inhibitors 
for the target with high affinity and specificity and attempts to 
sketch a pathway for what is conceivable beyond binding to arrive 
at a lead molecule based on a molecular/structural view of target-
drug interactions in a cellular milieu. The plausible steps involved 
in a molecular level design and development of drug molecules 
with desired affinity and ADMET profiles are also discussed. In 
contrast to this, QSAR related computational strategies, which tend 
to be case specific have been more successful in the prediction of 
drug efficacy, its metabolism and possible toxic effects [26,27]. 
QSAR strategies take a more systemic view by building empirical 
cause to effect relationships - the atomic perspective remains inher-
ent and hidden. In this review, we focus on the development of 
physicochemical atomic models for lead molecule generation.  

 We consider the in silico drug discovery process as comprising 
mainly three stages (Fig. (1)). Stage I includes identification of a 
therapeutic drug target and building a heterogeneous small mole-
cule library to be tested against it. This is followed by the develop-
ment of a virtual screening protocol initialized by either docking of 
the small molecules from the library or building these structures in 
the active site employing de novo design methods. The next step is 
binding affinity prediction / scoring and optimization of the set of 
molecules until the desired binding affinity is achieved. Following 
this, molecular simulations can be performed in a select few cases 
to obtain a more realistic appreciation of binding affinity and its 
dependence on solvent, salt and dynamics. This way, a set of mole-
cules with desired affinity are selected as better binders to the target 
and termed as 'hits'. In Stage II, these selected hits are checked for 
specificity by docking at binding sites of other known drug targets. 
The hits that score best for only the target of interest and poorly for 
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all other targets are selected as specific binding molecules. In Stage 
III, these selected hits are subjected to detailed in silico ADMET 
profiling studies and those molecules that pass these studies are 
termed as 'leads'. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A flowchart outlining a plausible generalized structure-based in 

silico drug discovery strategy. 

2. IN SILICO IDENTIFICATION OF HITS AS BETTER 

BINDERS: STAGE - I 

 Creating molecules with suitable drug-like properties for a spe-
cific target has been a cherished goal of medicinal chemists. Princi-
ples of molecular recognition have not advanced much beyond the 
conventional steric and electrostatic complementarities and hydro-
phobicity - the relative weightings often beating intuition - thus 
thwarting automated design of novel inhibitors and therapeutic 
agents based on a reliable set of rules, even when the three dimen-
sional structure of the drug target is known. The alternative is an 
energy-based approach, which conceals the principles but captures 
the overall thermodynamics of binding nevertheless [28]. Computa-
tional structure-based design, spurred by rapid advances in bio-
molecular target structure determination and computational re-
sources as well as reliable atomic level energy functions, is now 
gaining ground as a means of generating new pharmaceuticals [29-
32]. A computational strategy for identification of hits on the basis 
of binding affinities is illustrated in Fig. (2) and described in this 
section. 

2.1. Target Discovery/Selection: Three-Dimensional Structures 
of Drug Targets 

 Pharmaceutical agents generally exert their therapeutic effect 
by binding to and regulating the activity of a particular protein or 
nucleic acid called the drug target. Knowledge of target characteris-
tics, such as protein / nucleic acid sequence features, structural 
properties, proteomic profiles, pathway affiliation and roles, and 
tissue-distribution patterns, is useful for a molecular dissection of 
the mechanism of action of drugs and for predicting features to 
guide target discovery and drug design [33,34]. Target discov-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). A computational strategy and considerations for obtaining lead-like molecules in silico (Stage I). 
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ery/selection is a decision which focuses on finding an agent with a 
particular biological action that is anticipated to have therapeutic 
utility and is influenced by a complex balance of scientific, medical 
and strategic considerations [35,36]. Two crucial questions are 
answered in deciding whether to accept or reject a new research 
target. Firstly, what is the probable risk and the likely financial 
return of the target? Secondly, will the project provide the industry 
with the right drug, for the right market niche, at the right time and 
the right place? [37-39]. 

 Current drug therapy rests on about 218 targets which are clas-
sified into eight biochemical classes consisting of enzymes, recep-
tors, nuclear receptors, nucleic acids (DNA, RNA and ribosomes), 
ion channels, antibody targets, transporters and unknown/misce- 
llaneous targets (Fig. (3)). There are approximately 6000 drugs 
currently on the market for these drug targets. Three-dimensional 
structures for only 130 of these targets are available [40-43]. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The eight therapeutic drug target classes [40]. The dark bar indi-
cates the total number of known targets for that class. The light bar indicates 
the number of 3D structures available in PDB for that class. (Source: Drug-
Bank database [41] and Protein Data Bank [42]). 

 After the drug targets are identified partly by computational 
tools and mostly by experimentation and thorough validation, ob-
taining the three dimensional structure of the target and identifica-
tion of the drug binding sites are necessary for proceeding with the 
computational design of inhibitors/activators for the target. Conven-
tionally, this is achieved through experimental means such as X-
Ray or NMR methods [44,45]. It is also possible to adopt the rap-
idly evolving computational routes such as bioinformatics tools or 
ab initio structure prediction methods [46-49]. In this context, com-
putational strategies for a reliable structure prediction of DNA, 
RNA and proteins - particularly the membrane bound proteins - are 
highly relevant and in demand. 

2.2. Small Molecule Generation 

 Lead-like molecules serve as a starting point to demonstrate the 
desired biological activity on a validated molecular target. 

2.2.1. Current Strategies 

a. Manual/ Fragment-Based Approach 

 Candidate molecules may be generated manually using simple 
drawing/building tools available in commercial/ free software or in 
an automated manner via in silico combinatorial methods involving 
fragments or templates derived from databases. This technique 
forms the basis of de novo design [50-54]. 

b. Small Molecule Libraries 

 Candidate molecules may be retrieved from databases of small 
molecules for further screening. Target based virtual screening 
strategies require such small molecule libraries which are utilized in 
docking [55,56]. 

 A number of small molecule/ drug databases [57-59] have be-
come available for culling structures serially or randomly or 

through a query system for testing their binding affinity with the 
target. An ideal small molecular database for this purpose should 
contain molecules with properties that are uniformly distributed 
over the ranges considered as appropriate for drugs, to ensure suffi-
cient sampling of lead-like molecules for any target. Also, if the 
aim is sampling of all molecules in the database, then in order to 
keep the process expeditious, the number of molecules in the data-
base should be restricted.  

2.2.2. Development of a Non-Redundant Database of Small Mole-

cules (NRDBSM)  

 A lead-like molecule database should reflect diversity in chemi-
cal and structural properties and contains one or more molecules 
with suitable affinity to any target and appropriate bioavailability 
facilitating further chemical elaboration. Working towards this goal, 
we are developing a non-redundant database of small molecules 
(NRDBSM) giving special consideration to physicochemical prop-
erties and Lipinski's rule of five [60], which determine the solubil-
ity, permeability and transport characteristics across membranes. 
Some of these are molecular weight, number of hydrogen bond 
donors and acceptors, log P and molar refractivity [61]. The 
NRDBSM database is aimed specifically at high throughput screen-
ing of candidates and their further optimization into successful lead-
like molecules hence fixed limits for selected properties have been 
employed as filters to assemble the database. These precincts have 
been chosen based on the ranges within which most small molecule 
databases hold a high percentage of lead-like molecules [62-64]. 
NRDBSM currently holds close to 17000 molecules with simple 
structures, low molecular weight, less number of rings and rotatable 
bonds, low hydrophobicity such that after screening, optimization 
and consequent increase in molecular complexity, they would show 
a drift towards 'drug-like' property space [24]. The database is pre-
pared deliberately to avoid biases of normal distribution of these 
properties. Fig. (4) illustrates the distribution / frequency plots of 
some properties of interest for absorption and distribution of these 
small molecules comprising the database. The distribution plots 
uniformly span partition coefficient logP in -1.0 to 6.0 range, molar 
refractivity from 40 to 130, molecular weight from 150 to 480, 
number of hydrogen bond donors from 0 to 3 and hydrogen bond 
acceptors from 2 to 9. The NRDBSM besides facilitating focused 
searches in larger databases once a hit is identified should also help 
in finding a small number of hits for further optimization [65]. 

 To filter out probable candidates, apart from strategies like 
restricted exploration of isomeric structures, selection based on 
similarity to bioactive compounds [65], one may also introduce a 
pre-processor embedding active-site information in terms of func-
tional groups required and desired distances between the substitu-
ents on potential candidates, volume and shape of the candidates 
etc. essentially imposing the condition that the candidate be a com-
plementary negative image of the active site. The predominant con-
sideration in most lead-design protocols is activity or ingrained 
active-site information such that the molecules generated bind well 
in the active site. Ease of synthesis is also a crucial issue and the 
intuition of an organic chemist has to be converted into a computa-
tional filter in the in silico combinatorial approach. 

2.3. Preparation of Target and Small Molecule for Energy 

Based Processing 

 Once the set of candidate molecules satisfying the required 
criteria is obtained, the target and all the candidates are prepared for 
further computational analysis, energy and force calculations in 
particular. Current generation molecular mechanical (force field 
based) methods are extensively validated on biomolecular systems 
having the advantage over ab initio or semi-empirical quantum 
mechanical methods in being expeditious, and are preferred for 
modeling and simulation of biomolecular complexes [66,67]. Many 
force fields are now available for biomolecules, containing pre-
calculated partial atomic charges and parameters for proteins and 
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nucleic acids, obviating the need for parameterization for these 
[68,69]. AMBER [70,71], CHARMM [72], GROMOS [73], OPLS 
[74] are some of the currently popular force fields developed for 
simulating biological macromolecules like proteins, nucleic-acids, 
lipids, carbohydrates and protein-ligand systems. For small mole-
cules, however, rules of transferability are less reliable thus necessi-
tating a derivation of partial atomic charges and geometries using 
rigorous quantum mechanical methods or fast approximate methods 
employing semi-empirical calculations, followed by a biomolecular 
force field compatible parameter assignment appropriate for small 
molecules [75]. Given the huge dimensionality of chemical space, 
generating a limited set of appropriate parameters for a wide range 
of compounds is not a trivial problem. Several force fields like 
MMFF [76, CVFF [77], CHARMm [78], CFF [79], COMPASS 
[80], MM2/MM3/MM4 series [81], UFF [82], GAFF [83] among 
others, have been designed to reproduce internal geometries, vibra-
tions and conformational energies of small molecules. Force fields 
for metal ions have also been designed [84]. Combination of GAFF 
with AMBER is one prescription which offers a useful molecular 
mechanics tool for rational drug design and other areas where pro-
tein-ligand or DNA-ligand simulations are employed. The virtual 
molecules and the target thus prepared proceed to the next step. 

2.4. Docking 

 The most common computer aided drug design strategy is mo-
lecular docking and scoring [85,86]. Docking involves positioning 

ligands optimally within the target binding site and scoring them for 
potential activity. Molecular docking is often used in virtual screen-
ing methods, whereby large virtual libraries of compounds are re-
duced in size to a manageable subset, which if successful, includes 
molecules with high binding affinity to the target receptor [87,88]. 
Theoretical prediction of the correct placement of ligands at the 
binding site is a major challenge and is typically attempted using 
various docking protocols employing search algorithms such as 
Monte Carlo, genetic algorithms, molecular dynamics, fragment 
based approach, point complementarity, distance geometry, tabu 
searches, systematic searches and multiple methods [86,89]. For the 
target under study, an appropriate docking strategy must be chosen 
based on its efficiency in cases where the (i) structure of a reference 
complex is already known, (ii) the active site is known but the 
structure of a reference complex is not known, (iii) the structure of 
the target is known but no information on the active site and finally, 
(iv) the structure of the target is also not known but a pharma-
cophore model could be built based on known bioactive compounds 
for the target and/or sequence similarity with other proteins whose 
structures are known. Protein flexibility is fundamental to under-
standing the ways in which drugs exert biological effects, their 
binding site location, binding orientation, binding kinetics, metabo-
lism and transport [90-94]. Some of the most popular rigid and 
flexible docking approaches are; Prodock [95], ICM [96], 
MCDOCK [97], DockVision [98], QXP [99], AutoDock [100,101], 
GOLD [102], DIVALI [103], DOCK [104], FlexX [105], LUDI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. (4). Distribution of molecules according to physicochemical properties in the non-redundant database of small molecules (NRDBSM accessible at: web-
site: www.scfbio-iitd.res.in/drugdesign/software/nrdbsm/). 
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[106], SLIDE [107], FTDOCK [108] among others which have 
been proposed for structure-based drug design. The concepts, appli-
cations, success and limitations of various docking protocols have 
been reviewed by many authors in great detail [109-110].  

2.5. Binding Affinity Prediction/Scoring  

 A physicochemically rigorous and rapid computational method 
for binding affinity prediction or scoring will have widespread ap-
plication in structure-based drug design, virtual screening and de 
novo design protocols. In spite of several recent developments in 
this area, accurate prediction of binding affinities using computa-
tional methods based on an atomic level description of the energetic 
components of binding, thus transferable across a wide range of 
targets, has proved to be a major challenge [111]. Computational 
approaches which utilize the receptor structure information for 
estimating binding affinities can be pooled into five major classes 
with respect to their methodological background [25,112,113] - (A) 
Molecular simulation based approaches, (B) Empirical / force field 
/ additivity based approaches, (C) Knowledge based approaches, 
(D) Quantum mechanics based approaches and (E) Hybrid ap-
proaches. 

2.5.1. Binding Affinity Calculations Via Scoring Functions 

 The success of docking molecules into a target site and design-
ing lead-like molecules ultimately depends on the accuracy of the 
scoring function in capturing the correct configuration in the 
docked structure and in ranking accurately the compounds based on 
estimates of their relative binding affinities. Some requirements for 
a good scoring function are: accuracy in structure and affinity pre-
diction, efficiency in virtual screening and speed. Scoring functions 
are classified into three categories: knowledge based, force field 
based and empirical [114, 115]. Force field based scoring functions 
typically account for non-bonded interactions viz. van der Waals 
(Lennard Jones) and electrostatic (Coulombic) interactions [78, 
101, 116-118]. Empirical scoring functions employ a set of terms 
contributing to the binding energy, which are computed and trained 
against experimental data to determine their relative weights. The 
resulting equation with parameterized terms is verified on a test set 
and then applied to the systems under study [119-127]. Many terms 
have been employed by different empirical functions, such as hy-
drogen bonding, hydrophobic contacts, rotor terms, desolvation 
etc.. Knowledge based methods are developed via statistical analy-
ses of a large database of protein-ligand structures, where the fre-
quency of occurrence of properties such as interatomic contacts, 
pairwise potentials etc. are determined across the data set and 
adopted for scoring [114, 128-132]. The major advantage of such 
scoring functions is that they are computationally swift. Empirical 

and knowledge based methods, however, do not guarantee exten-
sions to other classes of molecules that differ from the data set on 
which the function is parameterized/trained. Comparative evalua-
tions of different docking programs in combination with various 
scoring functions for their applications in virtual screening have 
been carried out [133-136] and results show that many of the popu-
lar scoring functions are able to select correctly docked from mis-
docked structures, but correlation with experimental binding affini-
ties still remains a major limiting factor in computational drug dis-
covery [137]. 

 Once a candidate ligand is designed and docked, its interac-
tion/binding energy with the target (protein/nucleic acid) is calcu-
lated and compared with that for other proposed compounds and 
existing ligands, thus allowing assignment of a 'score' to the mole-
cule and facilitating automated selection of ligands with desired 
binding affinity (Fig. (5)).  

2.5.2. Free Energy Based Methods 

 The Molecular Mechanics-Generalized Born-Solvent Accessi-
bility (MMGBSA) [138,139], Molecular Mechanics-Poisson 
Boltzmann-Solvent Accessibility (MMPBSA) [140-142] and the 
Linear Interaction Energy (LIE) [143] are methods, which elicit 
binding free energies from structural information and may be used 
as an alternative to the computationally more intensive free energy 
simulations. The MMGBSA/MMPBSA approaches are parameter-
ized within the additivity approximation wherein the net free energy 
change is treated as a sum of a comprehensive set of individual 
energy components, each with a physical basis and estimated in a 
force field compatible manner. In the MMGBSA method, molecu-
lar mechanical terms are adopted to account for the direct van der 
Waals and electrostatics (between the target and the candidate 
molecule), the Generalized Born model for solvation electrostatics 
and the solvent accessibility for solvation van der Waals and hy-
drophobic contribution [144-146]. The MMPBSA method differs 
from this only in the calculation of solvation electrostatics contribu-
tions, which are determined as solutions to the Poisson-Boltzmann 
equation [147]. Extra terms for entropic contributions are often 
incorporated in these calculations. Both these methods when ap-
plied to energy minimized structures have been shown to be com-
putationally rapid and fairly reliable for assessing the contribution 
of various components to the binding free energy, limited only by 
the semi-quantitative nature of the results obtained. The LIE 
[148,149] method calculates the binding affinity as a sum of two 
parameterized terms that reflect the binding phenomenon. The pa-
rameters are obtained from experimental data and multiplied with 
ensemble averaged energy terms obtained from simulations. The 
MMGBSA and MMPBSA methods have been effectively applied 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Current accuracies with atomic level energy based scoring functions - Correlation between predicted binding energies and experimentally determined 
standard free energies of binding (A) Data computed for 251 protein-ligand complexes comprising 60 unique targets using the BAPPL server (available at 
http://www.scfbio-iitd.res.in/software/drugdesign/bappl.jsp) (B) Data computed for 39 DNA-ligand complexes comprising 6 unique base sequences using the 
PreDDICTA server (available at http://www.scfbio-iitd.res.in/ preddicta). 
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on both, single structures as well as ensembles obtained from simu-
lations (a preferred choice), allowing the flexibility of choosing 
speed over accuracy or vice versa. Free energy simulations [150, 
151] may be employed in cases where accuracy and theoretical 
rigor are of utmost importance and computational expense a minor 
issue. Here, techniques like free energy perturbation, thermody-
namic integration etc. are often employed for binding affinity de-
termination. All these methodologies are amenable to further sys-
tematic improvements.  

2.6. Study of the Dynamics of Promising Target-Candidate 
Molecule Complexes 

 Target-candidate molecule complexes with high binding affin-
ity can be further processed in a dynamic environment employing 
simulation strategies such as molecular dynamics or Monte Carlo 
methods. Though computationally expensive, such simulation 
strategies provide a route to investigating the effects of conforma-
tional flexibility, solvent and salt, and entropic factors. Simulations 
with explicit solvent are highly time consuming and the time scales 
may limit probing conformational changes induced by inhibitors or 
allosteric changes known to occur with activators [152-156]. Cross-
ing conformational barriers higher than thermal energies need spe-
cial treatment such as simulated annealing which have also become 
standard protocols [157,158]. Recently, flexible Monte Carlo simu-
lations applied to DNA-drug systems have shown considerable 
promise in this regard [159]. 

3. IN SILICO PROCESSING OF IDENTIFIED HITS AS SPE-

CIFIC BINDERS: STAGE - II 

 Apart from the requisite binding affinity, a key consideration 
during drug design is specificity [9-12]. Therapeutic strategies gen-
erally require inhibitors that are highly selective for a particular 

target. However, the molecular features driving selectivity in vivo 
remain only little understood.  

 Computational tools have been and are continuing to be devel-
oped to extract molecular parameters from the large body of ligand 
binding data responsible for affinity discrimination toward structur-
ally related proteins [160,161]. Traversing on the thermodynamic 
path, drugs with low specificity could potentially bind to a large 
number of targets, which could result in high toxicity. Also, very 
small amounts of the drug become available to bind to the target, 
thus requiring higher dosage further increasing the risk of toxic side 
effects.  

 A computational strategy for addressing the issue of specificity 
would be to assess the binding of the candidate molecule with all 
potential targets in the human cell - not an impossible task in the 
emerging low cost, high performance computing scenario with 
reliable scoring functions, improved annotations and mounting 
structural data. This could be achieved by building a database of 
possible binding sites for all potential targets and docking the can-
didate molecules to all these targets followed by binding affinity 
estimates. High affinity binding to non-target sites translates to low 
target specificity of the candidate thus indicating potential side 
effects. Unsuitable candidates could be filtered out on this basis 
while the remainder further optimized for improved affinity and 
specificity.  

 Computational methods have come of age to generate binding 
affinity columns of a candidate to diverse targets and diverse candi-
dates to the same target. An illustrative example is shown in Fig. 
(6) where a two-dimensional specificity matrix generated in silico 
for 14 drugs and their corresponding targets representing all cur-
rently known classes (Fig. (3)) of therapeutic drug targets. Each 
column in the figure represents binding affinity of a drug to all the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Specificity Matrix for drugs and their targets/non-targets. Drug 1 corresponds to Target 1, Drug 2 corresponds to Target 2 and so on. Grey cells repre-
sent drug binding to non-targets with higher affinity than the original drug-target interaction, thus indicating low specificity. White cells show low affinity. 
Target 1 is lymphocyte function-associated antigen LFA-1 (CD11A) (1CQP; Immune system adhesion receptor) and Drug 1 is lovastatin.Target 2 is Human 
Coagulation Factor (1CVW; Hormones & Factors) and Drug 2 is 5-dimethyl amino 1-naphthalene sulfonic acid (dansyl acid). Target 3 is retinol-binding pro-
tein (1FEL; Transport protein) and Drug 3 is n-(4-hydroxyphenyl)all-trans retinamide (fenretinide). Target 4 is human cardiac troponin C (1LXF; metal bind-
ing protein) and Drug 4 is 1-isobutoxy-2-pyrrolidino-3[n-benzylanilino] propane (Bepridil). Target 5 is DNA {1PRP; d(CGCGAATTCGCG)} and Drug 5 is 
propamidine. Target 6 is progesterone receptor (1SR7; Nuclear receptor) and Drug 6 is mometasone furoate. Target 7 is platelet receptor for fibrinogen (In-
tegrin Alpha-11B) (1TY5; Receptor) and Drug 7 is n-(butylsulfonyl)-o-[4-(4-piperidinyl)butyl]-l-tyrosine (Tirofiban). Target 8 is human phosphodiesterase 4B 
(1XMU; Enzyme) and Drug 8 is 3-(cyclopropylmethoxy) - n - (3,5-dichloropyridin-4-yl) - 4- (difluoromethoxy) benzamide (Roflumilast). Target 9 is Potas-
sium Channel (2BOB; Ion Channel) and Drug 9 is tetrabutylammonium. Target 10 is {2DBE; d(CGCGAATTCGCG)} and Drug 10 is Diminazene aceturate 
(Berenil). Target 11 is Cyclooxygenase-2 enzyme (4COX; Enzymes) and Drug 11 is indomethacin. Target 12 is Estrogen Receptor (3ERT; Nuclear Receptors) 
and Drug 12 is 4-hydroxytamoxifen. Target 13 is ADP/ATP Translocase-1 (1OKC; Transport protein) and Drug 13 is carboxyatractyloside. Target 14 is Glu-
tamate Receptor-2 (2CMO; Ion channel) and Drug 14 is 2-({[(3e)-5-{4-[(dimethylamino)(dihydroxy) - lambda ~ 4 ~ - sulfanyl]phenyl} - 8 - methyl - 2 - oxo - 
6,7,8,9 - tetrahydro - 1H - pyrrolo[3,2 - H]isoquinolin - 3(2H) - ylidene]amino}oxy)-4-hydroxybutanoic acid. 
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14 targets. Each row represents the affinities of the 14 drugs to a 
target. If the drugs are specific to the targets, high affinities should 
occur only along the diagonal and all the off diagonal cells should 
ideally represent nonspecific (weak) binding. However, if the drugs 
are not highly target specific, the off-diagonal elements could rep-
resent strong binding, which could be used as an indicator for im-
proving drug specificity as well as predicting possible toxicity and 
side effects. This matrix was generated based on the docking and 
binding affinity calculation for protein-ligand and DNA-ligand 
interactions using an in-house software (http://www.scfbio-iitd.res. 
in/software/drugdesign/bappl.jsp and http://www.scfbio-iitd.res.in/ 
preddicta). It may be discerned from Fig. (6) that six out of the 14 
drugs studied (Drug3, Drug5, Drug6, Drug8, Drug10, Drug11, 
Drug12) are specific to their corresponding targets (i.e. they do not 
bind to any other target with a higher affinity – this is indicated by 
the absence of gray cells in the drug column). The other drugs bind 
strongly to some non-targets too and could possibly have side ef-
fects. Once such indications are obtained from computational 
analyses, further investigations on toxicity/side-effects can be made 
and the drug design/delivery process can be modified to ensure 
higher specificity. The caveat, however, is that such predictions are 
strongly dependent on the accuracy/efficiency of the docking and 
binding affinity prediction methods employed. The matrix nonethe-
less portends the methodological developments to follow in com-
puter aided drug design. 

 A candidate molecule could be scanned against the entire ge-
nome / proteome in the cell if the sequence specific DNA confor-
mation and the three dimensional structures of all proteins in the 
target cell are established. Even pharmacophore models can be of 
help in pressing docking-scoring strategy into service to ensure 
selectivity for the target. The number of proteins expressed in a 
particular cell is reported to be around 10000-20000 although the 
human genome can code for many more proteins. Thus, efforts 
need to be routed to ensure specificity for target vis-à-vis these cell 
specific proteins. However, the spatial and temporal issues of gene 
regulation/ genome expression in cells are only poorly or partly 
understood. 

4. BEYOND BINDING AFFINITIES - TOWARDS A MO-
LECULAR TREATMENT OF ADMET PROFILES OF CAN-
DIDATES: STAGE - III 

 The success of a drug journey through the body is measured in 
the dimensions of absorption, distribution, metabolism and excre-
tion (ADME) properties (Fig. (7)). An ideal oral drug should be 
rapidly and completely absorbed from the alimentary canal and find 
its way directly and specifically to its site of action. It should not 
bind to, or interact with related receptors and or bind specifically to 
passing serum proteins. There should also be no risk that break-
down of this ideal compound gives rise to any toxic metabolites and 
the compound should have an appropriate half-life, passing gradu-
ally through the kidneys without harming them. 

 Leads discovered using virtual screening and de novo design 
methodologies need to be optimized to produce candidates with 
improved bioavailability and low toxicity [162]. Lead molecules are 
ligands that typically exhibit suboptimal target binding affinity. 
Studies have shown that there exists a difference between leads and 
drugs [63], which can be expressed as follows: Leads exhibit, on 
average, less molecular complexity (less molecular weight, less 
number of rings and rotatable bonds), are less hydrophobic (lower 
ClogP and LogD74) and have lower polarizability (less calculated 
molar refractivity, CMR). Leads should display the following prop-
erties to be considered for further development in the drug discov-
ery process or to be called as "drug-like" [63]: (1) relatively simple 
chemical features, amenable for combinatorial and medicinal chem-
istry optimization efforts; (2) membership to a well established 
SAR (structure-activity relationship) series, wherein compounds 
with similar structures exhibit similar target binding affinity; (3) 
favorable patent situation; and (4) good ADME properties. The 

ADME characteristics of a drug, together with its pharmacological 
properties are conventionally viewed as part of drug development - 
the process of making a molecule as effective as possible as a 
medicine [163]. Studies have indicated that poor pharmacokinetics 
and toxicity are the most important causes of high attrition-rates in 
drug development and it has been widely accepted that these areas 
should be considered as early as possible in the drug discovery 
process, thus improving the efficiency and cost-effectiveness of the 
industry [23, 24].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (7). The distribution path of an orally administered drug molecule in-
side the body is depicted. Black solid arrows: Complete path of drug starting 
from absorption at site of administration to distribution to the various com-
partments in the body, like sites of metabolism, drug action and excretion. 
Dashed arrows: Path of drug after metabolism. Dash-dot arrows: Path of 
drug after eliciting its required action on the target. Dot arrows: Path of the 
drug after being reabsorbed into circulation from the site of excretion. 

 Human ADMET predictions can be attempted at several levels 
[164]: (1) In silico or computational predictions from QSAR mod-
els to project in vitro or in vivo data, (2) Inter-species, in vivo-in 
vivo (including allometry) using data from pre-clinical species and 
(3) In vitro-in vivo using data obtained from tissue or recombinant 
material from human and pre-clinical species. In silico methods are 
already being harnessed to predict the probable ADMET profiles of 
any molecule, thus reducing the number of experimental studies 
required for compound selection and improving the success rate 
[9,165-167]. In silico prediction of drug-likeness at an early stage 
involves evaluation of various ADMET properties using computa-
tional approaches like QSAR or molecular modeling [165,168]. A 
number of studies have been conducted to identify properties that 
make a drug distinct from other chemicals [61,169,170]. Availabil-
ity of large databases of drug or drug-like molecules, e.g. CMC 
(Comprehensive Medicinal Chemistry), MDDR (MACCS-II Drug 
Data Report), WDI (World Drug Index) provide useful information 
about the properties of drugs. The most influential study of "Lipin-
ski's rule-of-five" identifies several critical properties that should be 
considered for compounds with oral delivery as concern [171]. A 
deeper understanding of the relationships between important 
ADME parameters and molecular structure and properties is needed 
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to develop better in silico models to predict ADMET properties [9]. 
Some of the ADME properties evaluated using in silico models are; 
intestinal permeability, aqueous solubility, human intestinal absorp-
tion, human oral bioavailability, active transport, efflux by P-
glycoprotein, blood-brain barrier permeation, plasma protein bind-
ing, metabolic stability, interactions with cytochrome P450s and 
toxicity. 

4.1. Absorption  

 Drug absorption is a property of paramount importance in drug 
design. Oral absorption, A, also termed bioavailability, is typically 
measured as [172], 

A= (Do/ Div) x 100 

where Do is the drug distribution after oral administration, Div after 
intravenous administration. 

 For reasons of ease of administration and patient compliance, 
there is an overwhelming preference for drugs to be orally bioavail-
able. One of the key requirements for oral bioavailability is that a 
compound should be soluble in the gastric fluid and be capable of 
permeating the intestinal epithelium, crossing from the gut into 
systemic circulation. Absorption depends on the solubility and per-
meability of the compound, as well as interactions with transporters 
and metabolizing enzymes in the gut wall. The considerations at 
this stage therefore are, ensuring solubility (hydrophilicity) and 
lipophilicity (hydrophobicity) for optimal absorption. The hydro-
philicity lipophilicity balance (HLB) refers to a subtle balance that 
the drug must possess. It is measured on an empirical scale of 0-20, 
where an HLB value of 0 corresponds to a completely hydrophobic 
molecule and a value of 20 to a molecule made up completely of 
hydrophilic components [173]. Another consideration which has a 
bearing on solubility and transformations is the pKa of the func-
tional group(s) on the drug and their ionization state in the stomach 
/ small intestines. Because of the difficulty in obtaining human 
permeability data, the Caco-2 cell monolayer or Madin-Darby ca-
nine kidney (MDCK) monolayer models are employed as refer-
ences [174]. Caco-2 or MDCK cell lines are routinely used in 
pharmaceutical industry and form a substitute for measuring actual 
intestinal permeability.  

 Considerable efforts have gone into the development of in silico 
models for the prediction of oral absorption [175]. However, pre-
dicting oral bioavailability is not an easy task, as it depends on the 
superposition of two processes - absorption and liver first-pass me-
tabolism. Simple models are based on descriptors such as log P or 
log D, or polar surface area, size of the molecule, shape and flexi-
bility [176-179]. Different multivariate approaches such as, multi-
ple linear regression analysis, partial least squares and artificial 
neural networks have been used to develop quantitative structure-
human-intestinal-absorption relationships [179]. In all approaches, 
hydrogen bonding is considered to be a property with an important 
effect on oral absorption. Lipinski's rule of five arrived at in a retro-
spective analysis of the marketed drugs has been an extremely use-
ful empirical guide in predicting oral bioavailability. Absorption 
simulation programs, such as GastroPlus [180] and Idea [181] have 
become valuable tools in lead optimization and compound selec-
tion. They are based on advanced compartmental absorption and 
transit (ACAT) models, in which physicochemical concepts, such 
as solubility and lipophilicity are more readily incorporated. The 
predictive approaches to permeability/absorption prediction have 
largely been confined to compounds that are transported across the 
intestinal mucosa by predominantly passive absorption mecha-
nisms. However, there are classes of drugs like ACE inhibitors and 
beta-lactam antibiotics that rely on active transport systems to con-
vey them from gut to the bloodstream [182].  

4.2. Distribution  

 After absorption, drug enters the blood circulation and binds to 
blood plasma proteins nonspecifically and is distributed to various 

tissues and organs in the body. The volume of distribution is de-
fined as [172,183], 

Vd (in litres) = Dbody / Dplasma 

where Dbody is the amount of drug in body (mg), Dplasma is plasma 
concentration of drug (mg/L) 

 The extent of the distribution depends on structural and phys-
icochemical properties of the compound. The primary goal of the 
drug however, is to reach and bind to its molecular target for which 
it is tailor-made. If the affinity of the drug is high for the target then 
the drug molecule will preferentially reach the target site obeying 
law of mass action and as the drug leaves after eliciting its re-
sponse, more drug molecules reach the site with blood plasma pro-
teins acting as reservoir. High affinity to the target and optimal 
binding strength for plasma proteins is required to ensure nonspe-
cific binding with affinities comparable to solvent or less. The vol-
ume of distribution, together with the clearance rate, determines the 
half-life of a drug and therefore its dose regimen and so an early 
prediction of both the properties would be of considerable benefit. 
The log-log plot of unbound volume of distribution, Vd against 
distribution D at pH 7.4 (with the data corrected for plasma-protein 
binding), reveals a clear linear trend, with log Vd increasing at 
higher lipophilicities [184]. This can be used as a simple guide in 
modifying and optimizing the Vd. It is important to estimate the 
fraction of drug bound to plasma proteins, because only the un-
bound drug can cross the membranes and bind to the intended mo-
lecular target. In addition to plasma proteins like albumin, glyco-
proteins and lipoproteins, drug can bind to a variety of particles in 
the blood, including red blood cells, leukocytes, platelets and 
globulins.  

 In silico approaches to predict plasma protein binding have 
been critically reviewed by several authors [185,186]. Recently, 
chromatographic retention data has been used to generate a predic-
tive QSPR comprising various E-state and molecular connectivity 
indices [187]. Using the multiple computer-automated structure 
evaluation (M-CASE) program and protein affinity data for 154 
drugs, models were generated that correctly predicted the percent-
age of drug bound in plasma for ~ 80% of the test compounds with 
an average error of ~ 14% [188]. For a drug to exert a therapeutic 
effect at a central nervous system (CNS) target, it must be able to 
cross from the systemic circulation into the CNS. There are two 
interfaces at which this may occur: the blood-brain barrier (BBB) 
and the blood-cerebrospinal fluid barrier. In the case of CNS-
targeted drugs, signs of good BBB permeation will be sought; con-
versely, for systemically targeted drugs, minimal BBB permeation 
will help reduce the likelihood of CNS side effects. For this reason, 
there has been a great interest in the computational prediction of 
BBB permeation as indicated by recent reviews [189,190]. The 
computational models developed for BBB permeation can be 
grouped into three classes. First, there are simple "rules of thumb" 
that have been derived by examining the molecular properties of 
compounds that do and do not cross the BBB [191-195]. Second are 
classification models that typically predict whether or not a com-
pound is a BBB permeator [196-198]. The final class comprises 
models predicting continuous values of BBB permeation based on 
either logBB or logPS data [199].  

4.3. Metabolism  

 A major concern in drug design is the possible in vivo meta-
bolic transformations and ensuring that the small molecules (hits) 
designed remain intact. The drug molecule through blood may also 
reach besides the target, the sites of biotransformations, usually 
liver, where the drug metabolizing enzymes (DME) present (Table 
1) convert it into metabolites. Several aspects of metabolism are 
relevant to drug discovery, including the rate and extent of metabo-
lism, the enzymes involved and the products formed, each of which 
can give rise to different concerns. The extent and rate of metabo-
lism affect clearance, whereas the involvement of particular en-
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zymes might lead to issues related to the polymorphic nature of 
some of these enzymes and to drug-drug interactions.  

 In silico approaches to predicting metabolism can be divided 
into QSAR and three-dimensional QSAR studies [200], protein and 
pharmacophore models [201,202] and predictive databases. Com-
putational techniques for the prediction of possible metabolites 
through structure based [203] or rule based methods [204], and the 
compilation of xenobiotic metabolite databases [204] are a signifi-
cant development in computer aided drug design.  

 There has been much interest, in the prediction of interactions 
of organic compounds with individual cytochrome P450 (CYP450) 
enzymes, which constitute the major drug metabolizing enzyme 
system in the human body. Two broad approaches have been 
adopted to model these interactions: those using available X-ray 
structures to create homology models of important CYP450s and 
those that are ligand based, studying known inhibitors/substrates in 
an attempt to generate pharmacophore or QSAR models [205]. 
Availability of three-dimensional structures of all the enzymes re-
sponsible for biotransformations combined with rules of design to 
ensure only nonspecific binding to these enzymes except for the 
target, is a conceivable pathway within the framework of structure 
based drug design. About 51 enzymes are identified as responsible 
for biotransformations and of these, structures for 33 are available 
in the PDB facilitating a start for an affinity-based elimination of 
compounds likely to be transformed into inactive metabolites (Ta-
ble 1). Also, a catalogue of enzymic reactions in vivo and substrate 
structures together with preferred cleavage / modification site in-
formation could suggest guidelines for drug designers in proposing 
candidate molecules to ensure that preempting modifications do not 
occur. The role of cofactors and coenzymes could pose some hur-
dles or failures in this scheme, which only a better appreciation of 
metabolomics can help alleviate.  

 Metabolomics is gaining increasing interest in drug discovery 
and disease diagnostics and treatment [206]. The concept of global 
analysis of all metabolites in a sample and the analysis of metabolic 
responses to drugs or diseases was recently introduced. Additional 
non-enzymatic modifications can also occur due to pH, coenzymes 
or other molecules in vivo. Conjugation is another possibility. A 
database of potential breakdown/modification pathways of a repre-
sentative set of small molecules, based on bond strengths, quantum 
mechanical charge distributions and organic reaction mechanisms 
may facilitate this step in suggesting a few do's and don'ts in design.  

4.4. Excretion  

 Clearance / excretion is an important parameter that defines, 
together with the volume of distribution, the half-life and thus the 
frequency of dosing of a drug. Clearance, Cl, is related to distribu-
tion and elimination in the following manner [183],  

Cl (L/hr) = Re / Dplasma 

where Re is the rate of elimination (mg/hr), Dplasma is drug con-
centration in blood plasma (mg/L) 

 Re is given by,                Re = ke x Dbody 

where ke is the elimination rate constant and Dbody is the amount of 
drug in body (mg).  

 Thus,           Cl = (0.693 x Vd ) / t1/2 

where Vd is the volume of distribution defined in section 4.2 and t1/2 

is drug half life defined in section 4.5.4. 

 Excretion of the drug from the body mainly takes place via the 
liver (hepatic clearance or metabolism and biliary excretion) and 
the kidney (renal excretion). Except highly polar substances, most 
drugs are lipid soluble and are reabsorbed from the kidney back into 
the bloodstream. These compounds undergo metabolism, generat-
ing more polar species that may avoid renal absorption and be ex-
creted in the urine [207]. The design must incorporate enough solu-
bility of the drug and its metabolites to facilitate this process. In a 

plot of plasma concentration against time, the area under the curve 
relates to dose, bioavailability and clearance [9]. Renal clearance in 
humans may be predictable from rat renal clearance that has been 
corrected for species differences in glomerular filtration rate [208]. 
Allometric relationships for clearance tend to be most successful for 
compounds undergoing renal clearance or high hepatic extraction 
where clearance approaches liver blood flow [209]. A multiple 
linear regression method combining clearance data from two spe-
cies and readily calculated structural parameters (MW, clogP and 
number of hydrogen bond acceptors) predicts human clearance 
much better (q2 = 0.682, RMSE = 0.35) [164]. Excretion related 
properties have not received much attention in drug design so far 
[185]. Software for the prediction of possible metabolites of the 
candidate molecule and a strategy to ensure HLB of the candidate 
and higher hydrophilicity of the metabolites should help.  

4.5. Toxicity  

 Enumerating molecular origins of toxicity is a difficult task but 
one could envisage the following factors as contributory and pro-
pose a computational route to overcome them (Fig. (8)). 

4.5.1. Tight Binding to Non-Targets 

 A repository of the three dimensional structures of all bio-
molecules inside the target cell can help establish specificity to 
target vis-à-vis non-targets and this, that is, selective binding to 
target is a necessity. 

4.5.2. Accumulation At Wrong Sites 

 This could be due to nonspecific binding. Proper HLB will 
ensure reentry into blood. Both (4.5.1 and 4.5.2) above also apply 
to metabolites of the drug.  

4.5.3. Tight or Irreversible Binding to Target with Multiple Func-

tions 

 Firstly, advances in metabolomics should help in identifying a 
target that does not interfere with different functions. Metabolic 
pathways help in understanding the point of interception by the 
drug and its consequences. The ideal target must have a single func-
tion that the drug is attempting to interfere with. Irreversible bind-
ing to targets exclusive to pathogens is acceptable so also to targets 
on viral DNA/RNA. Exclusive nucleic acid based targets in humans 
for cancer cells are probably difficult to establish without interfer-
ence with normal cells. Where targets have multiple functions, half-
life of the drug needs to be fine-tuned. In a nutshell, the computa-
tional pathways need to address proper affinity, specificity besides 
HLB and high solubility of the metabolites for minimizing toxicity. 

 The existing commercially available in silico tools for predict-
ing potential toxicity issues can be roughly classified into two 
groups. The first group uses expert systems that derive models on 
the basis of abstracting and codifying knowledge from human ex-
perts and scientific literature. The second group relies primarily on 
the generation of descriptors of chemical structures and statistical 
analyses of the relationships between these descriptors and the toxi-
cological end-points [9]. A recent review discusses the advances in 
toxicology software [210]. 

4.5.4. Drug Retention/Residence Times 

 Drug activity and ADME characteristics are related to the resi-
dence/retention time of the drug [211] i.e. the time period in which 
the drug remains bound at the target site, and hence is a crucial 
factor to be considered during drug design. Non-covalent target-
drug complex dissociation typically occurs via a unimolecular dis-
sociation process characterized by the rate equation (first order) 
[183], 

[C]= [C]o exp(-kdt) 

where [C] is the concentration of the drug in complexed form at 
time, t; [C]o is the concentration of the drug at t=0, kd is the disso-
ciation rate constant. 
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Table 1. Drug Metabolizing Enzymes with their Family and Availability of 3D Structures 

S. No. Drug Metabolizing Enzyme Family Structure in PDB 

1 Human Cytidine deaminase Hydrolases Yes 

2 Cholinesterase Hydrolases Yes 

3 ECOLI Beta-lactamase Hydrolases Yes 

4 Human Adenosine deaminase Hydrolases Yes 

5 Human Pancreatic alpha-amylase precursor Hydrolases Yes 

6 Human Arylsulfatase A precursor Hydrolases Yes 

7 Human Liver carboxylesterase 1 precursor Hydrolases Yes 

8 Human Glutamine synthetase Ligases Yes 

9 Human Cytochrome P450 3A4 Oxidoreductase Yes 

10 Human Cytochrome P450 2D6 Oxidoreductase Yes 

11 Human Cytochrome P450 2C19 Oxidoreductase No 

12 Human Cytochrome P450 2B6 Oxidoreductase No 

13 Human Amine oxidase Oxidoreductase Yes 

14 Human Cytochrome P450 2C9 Oxidoreductase Yes 

15 Cytochrome P450 19 Oxidoreductase No 

16 Aldehyde oxidase and P450 Oxidoreductase Yes 

17 Human Aldehyde oxidase Oxidoreductase Yes 

18 Human Cytochrome P450 1A2 Oxidoreductase No 

19 Cytochrome P450 3A4 Oxidoreductase Yes 

20 Human Cytochrome P450 2C19 Oxidoreductase No 

21 Human Cytochrome P450 2C8 Oxidoreductase Yes 

22 Human Cytochrome P450 CP2D6 Oxidoreductase No 

23 Human Cytochrome P450 CYP2D6 Oxidoreductase No 

24 Human Cytochrome P450 2A6 Oxidoreductase Yes 

25 Human Cytochrome P450 2E1 Oxidoreductase No 

26 Human Cytochrome P450 2A13 Oxidoreductase No 

27 Human Alcohol dehydrogenase 6 Oxidoreductase Yes 

28 Human Cytochrome P450 11A1 Oxidoreductase No 

29 Human Cytochrome P450 24A1 Oxidoreductase No 

30 Human Cytochrome P450 1A1 Oxidoreductase No 

31 Human Cytochrome P450, subfamily IIIA Oxidoreductase No 

32 Human Xanthine dehydrogenase/oxidase Oxidoreductase Yes 

33 Human Cytochrome P450 3A4 Oxidoreductase Yes 

34 Human Cytochrome P450 1A2 Oxidoreductase No 

35 Human Cytochrome P450 11B2 Oxidoreductase No 

36 RAT Cytochrome P450 3A1 Oxidoreductase No 

37 RAT Cytochrome P450 2C11 Oxidoreductase No 

38 Human Carbonyl reductase Oxidoreductase Yes 

39 Human Proline oxidase Oxidoreductase Yes 

40 Human Tryptophan 2,3-dioxygenase Oxidoreductase Yes 

41 Aminoglycoside 2'-N-acetyltransferase Transferases Yes 

42 Kanamycin nucleotidyltransferase Transferases Yes 

43 Aminoglycoside 3'-phosphotransferase Transferases Yes 

44 Human Glutathione S-transferase A1 Transferases Yes 

45 Human Glutathione S-transferase A2 Transferases Yes 

46 COMT ( catecol-O-methyl-transferase) Transferases No 

47 Human Nucleoside diphosphate kinase A Transferases Yes 

48 Human Thymidine phosphorylase Transferases Yes 
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(Table 1) contd…. 

S. No. Drug Metabolizing Enzyme Family Structure in PDB 

49 Human Deoxycytidine kinase Transferases Yes 

50 Human Histamine N-methyltransferase Transferases Yes 

51 UDP Glucosyltransferases Transferases No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). A methodology to assess the possible toxicity of a lead-like molecule taking off from hits in Fig. (2) to arrive at a lead molecule. 

 For such a process, the retention time, tR is obtained from the 
dissociation rate constant as, 

tR = 1/kd 

and the half life, t1/2 of the drug can be calculated [183] as  

t1/2 = 0.693/kd 

 The retention time or half-life are important factors which de-
termine the elimination of the drug and hence of significant consid-
eration in toxicity studies. A good binder may not necessarily be a 
good drug if its retention time is too high, which could cause toxic 
effects. Also, targets having multiple functions should only be 
blocked for optimal times or else metabolic pathways other than the 
targeted pathway may get adversely affected. On the other hand, 
long retention time could be potentially advantageous in terms of 
duration of pharmacological effect and target selectivity [211]. 
Longer half-lives also result in improved drug activity as has been 
demonstrated in the case of inhibition of viral replication [211]. 

 Drug activity and toxicity can be modulated by controlling its 
retention time, which depends on both, the structure and charge of 
the drug as well as external factors like pH [212] and concentration 
of other solutes [213]. The drug retention time is determined by 
mainly two dynamic factors, the amount of drug distributed and its 
elimination processes. Thus, longer retention time can be achieved 
by either increasing the volume of distribution or decreasing the 
elimination. The latter is typically easier and may be achieved by 
means of chemical modifications. For increasing the volume of 
distribution, sustained-release dosage forms and coadministration of 
inhibitors of drug-metabolizing enzymes can be employed [173]. 

 Computational methods for the prediction of retention times or 
dissociation rate constants can be extremely useful in the design of 
drugs with optimal retention times. Simulation based methods for 
the prediction of dissociation rate constants [214] may be employed 
but are highly compute-intensive. QSAR based approaches de-

signed for the study of interaction kinetics may also be adopted for 
this purpose [215]. An alternative to these can be the development 
of an empirical relation based on experimental data for swift predic-
tion of dissociation rate constants. 

 Keeping such an empirical approach in mind, we carried out a 
preliminary analysis of experimental data on equilibrium dissocia-
tion constants and half-lives derived from experimental dissociation 
rate constants, and observed a high correlation between the two 
(Fig. (9)). The data set includes DNA [216] as well as protein tar-
gets consisting of different enzymes [217-220], receptors [221] and 
other proteins [220]. 

 From the slope of the linear correlation plot above it may be 
inferred that, a nanomolar dissociation constant corresponds to a 
half-life of above an hour. This however, is only an upper limit 
based on in vitro studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Correlation between drug retention half-life (t1/2) and the dissocia-
tion constant (KD) shown as a log-log plot. 
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 Intuitively, it is expected that strong binders should result in 
complexes with longer half-lives. Rates are however related to free 
energies of activation and not free energies of binding, thus only an 
empirical correlation can be hoped for at this stage. Also, the effects 
of competitors and solvent have to be factored into such an analy-
sis. 

 Thus using an extension of the above approach or similar com-
putational techniques, binding affinity may be fine-tuned to address 
the retention time issue at the design stage. 

5. SOME SOFTWARES FOR DRUG DESIGN OR INTER-

MEDIATE STEPS THEREOF  

 A few comprehensive drug design software are listed in Table 
2, some of which are in public domain. 

6. CONCLUSION AND PERSPECTIVES 

 Given the very high attrition rates in drug discovery besides the 
cost and time factors, the role of computer aided drug design cannot 
be overemphasized. The key driving forces for current day in silico 
drug design endeavors are the availability of structural information 
of the targets, emergence of reliable energy functions and force 
field compatible solvation treatments, as well as free energy meth-
odologies and accessibility of high-end computing clusters. A com-
bination of basic concepts in chemical bonding (generation of can-
didate molecules from templates), quantum mechanics (geometry 
optimization and charge derivation), classical mechanics (molecular 
mechanics and dynamics), statistical mechanics (configurational / 
Boltzmann averaging) and thermodynamics (standard free energies 
of complex formation) allows the development of a rigorous proto-
col for in silico drug design. The overview presented here discusses 
the advances in and the applicability of predictive in silico methods 
to drug design, from candidate molecule generation, evaluation of 
their target affinity and specificity, identification of hits, to predict-
ing their fate in the body through ADME and toxicity studies. This 
review describes the drug design process from a physicochemical 
perspective as comprising three stages (Fig. (1)). The first stage 
mainly concerns hit identification on the basis of candidate genera-
tion and target affinity, molecular docking, scoring and binding 
affinity predictions. The next stage involves identification of the 
target specificity of the candidate molecules, for which a computa-
tional protocol is proposed (Fig. (6)). This protocol can be easily 
extended to all known targets with a series of candidate molecules 
or known drugs. The final stage deals with drug absorption, distri-
bution, metabolism, excretion and toxicity profiles. The signifi-
cance of these studies to drug design and in silico efforts to develop 
predictive ADMET techniques are discussed. Computational pre-
diction of drug retention times or half-lives, which are strongly 
related to and also dictate ADMET profiles, is emphasized and a 

method proposed. If all the steps enumerated in stages I to III (Fig. 
(1)) above could be implemented in silico, a drug molecule with 
desired affinity, high specificity and low toxicity can be discovered. 
The computational protocols (Fig. (2)) out-lined can be fine-tuned 
at each stage to improve accuracies. The major lacunae are in the 
structural database of biomolecules in target cells, a catalogue of 
cell specific enzymic reactions in vivo and software/methodology to 
screen the new molecules or their breakdown products for prevent-
ing specific binding to wrong sites. Progresses in structural genom-
ics / proteomics and metabolomics are expected to facilitate ad-
dressing some of these issues at a molecular level in the near future. 
Worldwide efforts on genomics and proteomics have given a sig-
nificant boost to both experimental and computational methods to 
march towards personalized medicine with minimal side effects. 
Automated lead design in silico seems a realizable dream in the 
near future.  
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